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Abstract

Semi-structured query systems for document-oriented
databases have many real applications. One particular
application that we are interested in is matching each
financial receipt image with its corresponding place of
interest (POI, e.g., restaurant) in the nationwide database.
The problem is especially challenging in the real production
environment where many similar or incomplete entries exist
in the database and queries are noisy (e.g., errors in optical
character recognition). In this work, we aim to address
practical challenges when using embedding-based retrieval
for the query grounding problem in semi-structured data.
Leveraging recent advancements in deep language encoding
for retrieval, we conduct extensive experiments to find the
most effective combination of modules for the embedding
and retrieval of both query and database entries without
any manually engineered component. The proposed model
significantly outperforms the conventional manual pattern-
based model while requiring much less development and
maintenance cost. We also discuss some core observations
in our experiments, which could be helpful for practitioners
working on a similar problem in other domains.

1 Introduction
Querying a database with semi-structured natural lan-
guage (e.g., in JSON format) has many real-world appli-
cations (Arora and Aggarwal 2013; Bhardwaj 2016). One
particular application that we are interested in is Place of
Interest (POI) Match, which is an active product where the
user input is a paper bill image and the desired output is a
database entry that corresponds to the POI where the finan-
cial transaction is deemed to have taken place. Most com-
mercial receipts have place information, and thus the receipt
and POI matching can be done by extracting the informa-
tion from the receipt image and querying the POI database.
This can be done in steps as follows: (1) An optical charac-
ter recognition (OCR) is first applied to extract text and its
geometric location from the receipt image. (2) A document
parsing (information extraction) process is applied to deter-
mine which pre-defined category (e.g., store name and store
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Figure 1: Results of our OCR and Parsing web demo1.
The system successfully extracts structured information of
the input paper bill image (upper). However, given a noisy
sample (we added common noise to the sample, e.g., low im-
age resolution, perspective view and blur), text recognition
(red) and word order prediction (orange) failed (bottom).

address) the obtained text belongs to (see the details in Fig-
ure 1). (3) Finally, the grounding process uses the extracted
information as a query to the POI database, i.e., find the
corresponding store in the database. We present the whole
end-to-end pipeline for POI Match in Figure 2. This paper
focuses on the grounding stage of the pipeline, or more gen-
erally, the problem of grounding a semi-structured query on
document-oriented databases, and we use POI Match as the
primary testbed for evaluating our solution to the problem.

One baseline approach for the grounding module (that
has been in service in our product for the last few
years) is to build a rule-based system with document-
oriented databases (Krishnan, Elayidom, and Santhanakrish-
nan 2016; Gupta and Rani 2016). In the system, querying
functions implemented in the databases are used to find the

1https://clova.ai/ocr



(a) Image noise

Receipt Image

(1) OCR

{
“texts” : [

…
{

“text”:“하하하요가이기데미”,
“2d_location” : [0.5, 0.15]

}, … ,{
“text”:“0317153556”,
“2d_location” : [0.9, 0.9]

}, …
]

}

(2) Parsing

(b) OCR noise
(c) Parsing noise

Keys Extracted Values Ground Truth
name 하하하요가이기데미 하하하요가아카데미

tel 0317153556 0317153558
address 분당구성남대로 381 

808호경기
경기성남시분당구성
남대로 381 808호

{
“name” : “하하하요가학원”,
“tel” : “0317153558”
“address” : NULL,
“type” : “academy”,
“is_franchise” : false,
…

}

…
…

Store Database

(d) DB noise

{
“name” : “하하하 Cafe 태평로점”,
“address” : “서울태평로1가세종대로 21”, 
“tel” : “02-346-362”,
“type” : “cafe”,
“is_franchise” : true,
…

}

(3) Grounding

Figure 2: An overview of Place of Interest (POI) Match. Given an input receipt image, (1) an OCR engine is applied to extract
texts and their 2D locations, (2) the extracted information is parsed to a semi-structured representation (e.g., in JSON format),
and (3) the input receipt is grounded to a POI database entry. Grounding is a difficult task since (a) the quality of the input
image can be poor, (b) OCR noise or (c) Parsing noise (e.g., the order of words in the address is incorrectly estimated in the
example) can lead to wrong information, and finally (d) the extracted information may not exactly match the information in the
database (e.g., missing values or outdated information).

store, e.g., regular expression-based search algorithms (Li
et al. 2008; Lockard, Shiralkar, and Dong 2019; Nadig,
Braschler, and Stockinger 2020). If multiple stores are re-
trieved by the function, the system can finalize the answer
with predefined rules, e.g., return the most visited store. Al-
though the idea is simple, it is difficult to make good rules
to cover numerous user queries. However, in fact, such a
heuristic rule-based approach is fundamentally limited as
there are limitless exceptions in real-world environments.

In practice, the problem becomes increasingly non-trivial
when (1) the input image is of bad quality, so that the model
fails to extract correct information (See the bottom of Fig-
ure 1 and (a, b, c) of Figure 2), or (2) the information in the
receipt does not exactly match the corresponding database
entry, e.g., missing value or outdated information (See (d)
of Figure 2). Furthermore, the size of a database is often in
the order of millions or more (for instance, our database for
POI Match has approximately six million entries) and many
database entries include similar values, such as the name of
franchises, so that it is difficult to differentiate. Hence, for
robust grounding in a real-world scenario, the model should
consider multiple fields simultaneously and should handle
both semantic and lexical similarities among the data to dis-
tinguish similar entries. Also, the model should deal with the
issues of missing values and noises of the data. Because of
these difficulties, our current rule-based model has a more
than 30% failure rate for all incoming queries.

To address these issues, we combine an idea of
embedding-based retrieval (Karpukhin et al. 2020; Huang
et al. 2020) into database querying. In our system, both

queries and database entries are represented by vectors.
Given a query, the corresponding database entries are re-
trieved by searching nearest neighbors in the vector space.
To make a good system for grounding, we first introduce a
framework for grounding that consists of several replaceable
modules. And then, we conduct extensive experiments to as-
sess the contribution of individual modules more rigorously
and find the best module combination over the model ar-
chitectures. The proposed model successfully alleviates the
issues of missing values and noises of the data, and signifi-
cantly outperforms the rule-based baseline model by more
than 8% point of top-1 matching accuracy in POI Match
(this corresponds to approximately 2 million user queries per
month). While our work primarily focuses on one particular
application (POI Match), we believe that our findings can be
easily extended to other real applications that rely on semi-
structured queries on databases.

2 Background
2.1 OCR and Parsing
Information extraction (IE) on semi-structured document
images is a core step towards automated document process-
ing. In general, document IE systems consist of two stages:
OCR and Parsing.

OCR The OCR process consists of two sub-steps: detec-
tion and recognition. First, in the detection procedure, all
text regions in the given image are predicted (Baek et al.
2019b). The recognition module receives the detected im-



age patch as its input and extracts all texts in the patch (Baek
et al. 2019a).

Post-OCR Parsing The parsing task can be interpreted as
a named entity recognition (NER) task that maps texts to
predefined categories based on the recognized text and loca-
tion information. The task aims to extract the information in
a structured form (See Figure 1) (Hwang et al. 2019, 2021b).
However, the inference cannot always be accurate, espe-
cially in a real application environment. There have been
various additional studies on how to correct the recognized
information, which is still often inefficient and error-prone
in practice (Rigaud et al. 2019; Hwang et al. 2021a).

2.2 Database Querying

In document-oriented databases, the data is stored in the
form of semi-structured data that consists of several key-
value pairs, e.g., JSON or XML. Database querying is done
by retrieving corresponding database entries that satisfy
the input conditions. For instance, in MongoDB (Krish-
nan, Elayidom, and Santhanakrishnan 2016), the database
entries whose the value of “color” is “gold” is re-
trieved by using the input query find(color:"gold").
Querying with multiple conditions is also supported, e.g.,
find(color:"gold",type:"necklace").

Database querying often fails in real-world applications
since both queries and database entries are noisy in most
practical scenarios, e.g., misspellings in a query or miss-
ing values in database entries. A common solution to this
problem is using a text-based search engine (e.g., Apache
Lucene) (Gormley and Tong 2015; Gupta and Rani 2016).
However, the performances are limited as the core idea is
based on simple string distance calculation algorithms which
are not good at capturing semantic similarities among the
data (Robertson and Zaragoza 2009; Gormley and Tong
2015).

2.3 Embedding-based Retrieval

To retrieve textual data such as words, sentences, or doc-
uments, many modern NLP applications convert the data
into vector representations, i.e., embeddings (Mikolov, Yih,
and Zweig 2013; Devlin et al. 2019; Karpukhin et al. 2020).
Once the data is embedded in vector space, retrieval can be
done efficiently by calculating similarities among the vec-
tors. For instance, if the data is embedded into an inner-
product space, the retrieval can be done with maximum in-
ner product search algorithms (Ding, Yu, and Hsieh 2019;
Tan et al. 2019; Johnson, Douze, and Jégou 2019). The
embeddings are expected to hold characteristics, properties,
or even semantics of the data so that retrieval targets can
be found simply by calculating the distances in the vector
space. To obtain such good embeddings, a range of repre-
sentation learning methods has been studied (Mikolov, Yih,
and Zweig 2013; Kim 2014; Bojanowski et al. 2017) and
most of the modern methods utilize BERT-based models to
embed the data (Devlin et al. 2019; Karpukhin et al. 2020).

Database entry

BERT

embedding

{
“name” : “하하하요가학원”, 
“address” : NULL, 
“tel” : “031715355”, 
“type” : “academy”, 
“is_frenchise” : false,

}

Valid fields

[CLS] 하하하요가학원[SEP_name] [MASK_addr][SEP_addr]031715355[SEP_tel]

…

Figure 3: An overview of semi-structured data embed-
ding process. Values of valid fields are concatenated and
passed to a BERT-based model to obtain the vector repre-
sentation.

3 Grounding
In this section, we aim to introduce our model for grounding.
Before introducing the model, we formally define grounding
and provide some preliminaries.

Problem Definition. In this paper, we are interested in
the task of finding a corresponding database entry from
a large-scale document-oriented database, given a noisy
semi-structured query (e.g., JSON). We denote this task as
grounding. In the task, both queries and database entries
are semi-structured data that consists of several key-value
pairs. We are given n queries (∈ Q), m database entries
(∈ D), and their associations which can be expressed as a
matrix (aiĵ) ∈ Rn×m, where the value of aiĵ represents
the strength of the association between i-th query and ĵ-
th database entry. For instance, we may use the number of
link (edge) between i-th query and ĵ-th database entry in the
trainset as the association strength aiĵ . The model is trained
to predict the given association strengths (aiĵ). In a test
phase, for an input user query, the database entry with high
predicted association strength is considered as the matching
target. We assume the target is a single database entry but
it can be a set of database entries if the database is noised
with duplicated entries (this is not rare in real application
environments).

3.1 Grounding Model
We bring an idea of embedding-based retrieval into database
querying. In the proposed model, both queries and database
entries are represented by dense vectors (i.e., embeddings).
Under this setting, grounding (database querying) becomes
finding a close corresponding database entry vector for a
given query vector.

The entire model architecture is based on a simple



Siamese neural network (Bromley et al. 1994; Reimers
and Gurevych 2019; Gillick et al. 2019; Kim et al. 2019;
Karpukhin et al. 2020). Two neural networks (i.e., back-
bones) learn nonlinear mapping functions to learn the em-
beddings of queries and database entries that are used for
database querying. The querying is done by calculating sim-
ilarity scores among the obtained input query vector and the
embeddings of database entries.

Backbones We use BERT-based models (Devlin et al.
2019; Conneau et al. 2020) following recent trends in NLP.
To apply BERT-based models on document-oriented data,
the first step is to vectorize the input data as the model as-
sumes continuous data as inputs. To prepare input vectors,
we convert the document-oriented data into a sequence of
tokens (See Figure 3). Each token is converted to a vector
representation through a look-up operation over a learnable
embedding matrix (Devlin et al. 2019).

Input feature selection There are several choices to be
made to make the input sequence; (1) what fields to con-
sider, (2) how to concatenate the multiple field information.
In our pipeline, a set of valid fields is first defined and only
the values of the valid fields are concatenated to make a se-
quence (See Figure 3). In BERT-based models, a separator
token [SEP] is used for the concatenation of different fields
in general (Devlin et al. 2019; Cohan et al. 2019; Karpukhin
et al. 2020). However, in the real-world data, the number of
fields is often more than two and the data has lots of miss-
ing values (i.e., null values). In our preliminary experiments,
we observed that a naive concatenation of multiple fields de-
grades the performance of the system. To resolve this issue,
we introduce two additional special tokens ([MASK]∗ and
[SEP]∗) per each field ∗. The token [MASK]∗ is used when
the value of the field ∗ is missing. The token [SEP]∗ is used
for separating the value of ∗ with other values. See Figure 3
for more details.

Similarity functions To calculate the association strength
ai,ĵ between queries and database entries, the model learns
fθ : Q 7→ Y and gϑ : D 7→ Y , where Y ∈ RK is a set
where embeddings take a value with some dimensionality
K ∈ N. The generated embeddings of query yi := fθ(qi)
and database entry yĵ := gϑ(dĵ) capture the association
strength by s(yi,yĵ) ∝ ai,ĵ , where s : Y × Y 7→ R is a
similarity function, such as, inner product similarity (IPS)
〈yi,yĵ〉 or negative squared distance (NSD) −||yi − yĵ ||22.

3.2 Model Training
Given the training data {ai,ĵ}, the model parameters {θ,ϑ}
are learned by maximizing

∑
1≤i≤n,1≤ĵ≤m ai,ĵ logP (ĵ|i),

where P (ĵ|i) is modeled as,

exp(s(yi,yĵ))∑
1≤k̂≤m exp(s(yi,yk̂))

. (1)

The summation in the denominator makes training difficult,
especially when m is large, which is often the case in real-
world environments. The problem can be circumvented by

using negative sampling, leading to a modification of the
above objective as follows,

exp(s(yi,yĵ))∑
k̂∼Pneg

exp(s(yi,yk̂))
, (2)

where Pneg is a distribution for negative sampling, such as,
uniform, empirical frequency, etc. For efficient model train-
ing, we train the models with mini-batch gradient descent
and use other samples in a mini-batch as negative sam-
ples (Gillick et al. 2019; Karpukhin et al. 2020).

3.3 Implementation
We implement a library grounder that includes all
fundamental functionality for training and deploying a
grounding system. grounder is implemented in Py-
Torch (Paszke et al. 2019) and built upon two public
projects. To use a range of BERT-based models, we use
transformers (Wolf et al. 2020) developed by hug-
gingface. For an efficient retrieval of nearest neighbors,
faiss (Johnson, Douze, and Jégou 2019) developed by
Facebook AI is used. Our implementation will be publicly
available on GitHub2.

4 Experiments
In experiments, we study two architectures of backbone
(MBERT and XLMR), two similarity functions (IPS and
NSD), two options in a separator token (Single and Multi),
and three options in masking missing values (None, Sin-
gle and Multi). All possible grounding module combinations
(2×2×2×3= 24 in total) are evaluated to find the best module
combination for our application POI Match. We also assess
the efficacy of each module, and we believe that our findings
in the experiments can be easily extended to other real-world
applications that rely on grounding.

Common Settings. Given a receipt image and a database
of stores, our task is to find a corresponding store in the
database that matches the image. We evaluate all models
with top-1 matching accuracy. In experiments, we use 1 mil-
lion receipt images and a database that contains approxi-
mately 6 million POI information. Each query has 4 valid
fields, where each field corresponds to the name, telephone
number, address, and business number of the store respec-
tively. Each database entry has 4 valid fields, where each
field corresponds to the name, telephone number, address,
and street name (i.e., another type of address) of the store
respectively. There are many missing values in the data, for
example, 21% of the database entries have null values on the
telephone number field and 17% on the street name field re-
spectively. Each receipt image is linked to a database entry
with the help of our rule-based model that has been in ser-
vice in our application; the model is first applied to the image
to find a corresponding database entry, and the links are re-
fined by a human annotator. The application is deployed in
South Korea and the main language of the data is Korean.

2https://github.com/clovaai



4.1 Comparison Models
Baseline To assess the efficacy of our proposal, we use
our conventional rule-based model as a baseline model. The
model queries a store with regular expression-based search-
ing algorithms on specific fields, such as telephone number
or address. The model may not be able to return a single can-
didate, for example, franchise stores tend to have the same
values in some fields, e.g., telephone number, so matching
tends to be more difficult. If multiple entries are returned,
predefined rules are applied for re-ranking. For example, the
most visited store is returned based on the history. These
heuristic rules are hard to cope with the various exceptions
in real-world environments.

Module Combinations As explained in Section 3.1, we
build a grounding model by combining several replaceable
modules as explained below.

Backbones. To embed the multilingual data, we test two
BERT-based models; Multilingual BERT (MBERT) (Devlin
et al. 2019; Pires, Schlinger, and Garrette 2019) and XLM-
Roberta (XLMR) (Conneau et al. 2020).

Similarity functions. To score the similarities between
the data (i.e., JSON objects), two similarity functions are
tested; inner-product similarity (IPS) 〈yi,yĵ〉 and negative
squared distance (NSD) −||yi − yĵ ||22.

Separator token for field concatenation. In our pipeline,
each JSON object is converted into a sequence of tokens.
During the conversion, we simply concatenate all values in
the valid fields separated by a single separator token be-
tween the values (Single) (Devlin et al. 2019; Karpukhin
et al. 2020). To emphasize the distinctions between values
from different fields, we also tet multiple field-wise separa-
tor tokens (Multi). See Figure 3 and Section 3.1 for more
details.

Masking token for missing values. In Devlin et al.
(2019), a special mask token is used to train the model
to capture the associations among input tokens. During the
training, the input tokens are randomly replaced by the mask
token and the model tries to recover the masked values from
its neighbors. Inspired by this, we use the mask token to mit-
igate the negative ramifications of missing values in the data.
When the value is missing, we use either a single masking
token (Single) or multiple field-wise masking tokens (Multi)
instead of leaving it as blank (None). See Figure 3 and Sec-
tion 3.1 for more details.

4.2 Results and Analysis
We conduct extensive experiments to assess the effective-
ness of each module and to find the optimal combination.

Experiment 1 (Module Combinations). We evaluate all
module combinations (2×2×2×3= 24 in total). The results
are shown in Table 1. In this experiment, we split the 1M
receipt images into test (10K) and train (the rest). We use
the database entries (390K) that are associated with the 1M
receipts. The models are trained to learn the associations be-
tween trainset receipts and database entries. And the trained

Backbone Sim. Sep. Mask. Acc.
MBERT IPS Single None 86.61
MBERT IPS Single Single 87.45
MBERT IPS Single Multi 85.38
MBERT IPS Multi None 88.91
MBERT IPS Multi Single 88.01
MBERT IPS Multi Multi 88.15
MBERT NSD Single None 85.61
MBERT NSD Single Single 87.09
MBERT NSD Single Multi 90.26
MBERT NSD Multi None 90.85
MBERT NSD Multi Single 90.73
MBERT NSD Multi Multi 91.61
XLMR IPS Single None 87.36
XLMR IPS Single Single 89.36
XLMR IPS Single Multi 90.36
XLMR IPS Multi None 90.14
XLMR IPS Multi Single 89.36
XLMR IPS Multi Multi 89.58
XLMR NSD Single None 89.11
XLMR NSD Single Single 91.05
XLMR NSD Single Multi 90.94
XLMR NSD Multi None 90.55
XLMR NSD Multi Single 89.87
XLMR NSD Multi Multi 89.81

Table 1: Performances of all module combinations. We
run each module combination three times and average ac-
curacies are reported in the table. There are consider-
able performance gaps among the module combinations
(2×2×2×3=24 in total).

models are used to predict unobserved associations from the
test set receipts. The batch size is set to 32, the number of
steps is 40K, and the learning rate is 2e-5. As can be seen
in Table 1, there are considerable performance gaps among
the combinations ranging from 85.6 to 91.6. The best mod-
ule combination is MBERT-NSD-Multi-Multi. To show the
effect of each module more comprehensively, we plot the
module-wise performances in Figure 4. MBERT has a large
performance variance, and the combination of MBERT and
NSD seems to be effective. The result also shows that using
multiple special tokens (Multi) is effective for mitigating the
issues of multiple field concatenation as well as missing val-
ues in the data.

Experiment 2 (Valid Field Selection). We also investi-
gate the effects of using multiple fields by changing the num-
ber of valid fields during the training. The results in Table 2
show the matching accuracy becomes higher as the number
of valid fields grows. This highlights the importance of using
multiple fields to differentiate similar entries in the database,
leading to a performance improvement in grounding.
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Figure 4: Module-wise comparative analysis. We run each
setting three times and average accuracies are reported.

Valid Fields Acc.
Store Name 33.66
+ Address 81.40
+ Telephone Number 91.02
+ Business Number 91.61

Table 2: Analysis on the number of valid fields. The
matching accuracy becomes higher as the number of valid
fields grows.

Experiment 3 (Results on POI Match). To find out how
effective the proposed system is in our application environ-
ment, we evaluate the model on the daily queries from real
users in POI Match. We gathered 300 queries and manually
annotated the correct database entries. To see the practical
gains in the real application scenario, we use all database
entries (approximately 6 million entries) in this experiment,
that is, the model should distinctly distinguish numerous
similar entries from the full database. We trained our model
with a batch size of 64 for 80K steps. Table 3 shows, the pro-
posed matching model significantly outperforms the base-
line model that is currently deployed by 8% point of top-
1 matching accuracy. This performance gap corresponds to
approximately 2 million user queries per month.

5 Concluding Remarks and Future Work
In this paper, we propose a new type of grounding system
for querying large-scale document-oriented databases with
semi-structured natural language. The proposed system uti-
lizes embedding-based retrieval to alleviate several practical
concerns in the semi-structured query grounding problem.
We examined the proposed system on our application POI
Match which aims to find the corresponding POI entry for
a user input receipt image. Despite various OCR, Parsing,
and DB noises, the proposed method successfully matches
the receipt image with the corresponding DB entry. In our
experiments, the proposed model significantly outperforms
the heavily engineered baseline model that has been used in
our product for the last few years while requiring much less

Models Acc.
Baseline Model 67.0
Proposed (MBERT-NSD-Multi-Multi) 75.3

Table 3: Matching accuracies of the daily queries from
the real users in POI Match. The proposed matching algo-
rithm outperforms the heavily engineered baseline method
by 8% point of top-1 matching accuracy.

development and maintenance cost.
As future work, testing the proposed grounding pipeline

on different applications or domains would help to get a
general understanding of each module. Investigating the
connections between some recent theoretical analyses on
Siamese neural-network-based retrieval and our empirical
results would also be interesting. We believe our findings
in this work can easily be extended to other real-world ap-
plications that are dependent on a similar problem.
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