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Abstract 

Deep learning techniques have become the leading choice for 
applications in many fields, and finance is no exception. 
However, the success of such applications in other sciences 
does not necessarily extend to those in finance. In this paper, 
we examine the application of machine learning and deep 
learning techniques to the modeling of corporate earnings. 
Corporate earnings data are noisy, have limited sample sizes, 
and require a large amount of disparate inputs for modeling. 
We illustrate the success of gradient-boosting models in fore-
casting earnings and examine how standard deep learning 
techniques fall short in comparison. We also show how en-
coding is crucial for deep learning to be effective. Overall, 
our work highlights how deep learning might not be the opti-
mal approach for addressing forecasting corporate earnings.  

 Introduction   

Historic breakthroughs in deep learning have occurred over 

the past decade. Some scholars suggest that gains from deep 

learning have translated to the quantitative areas of finance, 

such as asset pricing and portfolio theory (Ozbayoglu, 

Gudelek, and Sezer 2020). However, such gains may prove 

illusory in actual application. Industry practitioners estimate 

that AI models during actual market implementation have a 

failure rate of about 90% (Kumar 2019).  

 In this paper, we compare the performance of deep learn-

ing and machine learning models on forecasting corporate 

earnings. We differentiate deep learning as models involv-

ing multiple neural network layers, models of layer depth.  

As the focal datapoint of many investors, forecasting stock 

earnings replicates a key task of financial analysts. Our anal-

ysis limits the input data to financial statements and finan-

cial/economic markets - we do not utilize alternative data. 

The efficacy of alternative data is highly related to the ac-

cessibility of the data (Kolanovic and Smith, 2019) so the 

input data is restricted only to those that is available to the 

general investing public. Finally, the objective is to bench-

mark AI models across a broad universe of stocks, thus we 
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will focus on aggregate performance on a broad universe ra-

ther than anomaly detection or earnings surprises.  

 One of the biggest hurdles for AI models in finance is the 

low signal-to-noise ratio that characterizes finance (Lopez 

de Prado 2018). Forecasting earnings with AI models is fur-

ther complicated by the lack of samples. The quarterly state-

ments of 1,000 companies over a 5-year period represent 

only 20,000 samples. This tally does not account for irregu-

lar accounting periods or non-reported financials: in prac-

tice, the actual applicable sample size can be much lower. 

Combining these issues with high noise, we designate the 

situation as a noisy high-dimension low-sample size 

(HDLSS) problem, and it is the archetypal problem for fi-

nance and economics with low-frequency data. In this paper, 

we demonstrate that noisy HDLSS problem in company fi-

nancials prevents deep learning from finding hierarchical 

structure in the data. We analyze the deficiencies of standard 

deep learning models and compare the efficiency of ma-

chine learning (e.g., gradient boosted tree) counterparts. Our 

contributions include (1) an application of gradient boosting 

tree models that outperforms market practitioners and mod-

els of established finance and accounting literature, and (2) 

evidence that the potential of deep learning models fails in 

comparison for modeling company financials and requires 

robust encoding to be effective. The remainder of the paper 

is organized as follows. We start by outlining our data and 

model structure. Then, we examine the results of gradient 

boosting tree models that can beat professional and aca-

demic benchmarks. This examination is followed by an 

analysis of the deep learning model results and their short-

comings. Finally, we discuss the implications of our re-

search. 

Methodology 

Data 
Our data universe consists of constituent companies of 

major global stock market indices, including S&P500, 

 



Nikkei 225, Hang Seng Composite Index, and CSI 300, 

which account for over 950 total listed companies. Our data 

period is from 1998Q1 to 2019Q1 with over 25,000 quar-

terly statements. Our data for dependent (input) variables in-

clude three major groups. The first is fundamental data, 

sourced from WorldScope Fundamentals database, which is 

composed of reported financial information such as earn-

ings, revenue, assets, and liabilities. From these data, we se-

lect 22 value-relevant ratios from accounting and finance lit-

erature, including Ou and Penman (1989), Lev and Thiaga-

rajan (1993), and Abarbanell and Bushee (1997). The sec-

ond group, sourced from Institutional Brokers Estimate Sys-

tem (I/B/E/S), is composed of forecast estimates of funda-

mental data made by research analysts at financial firms. 

The key ratios from this group involve 12 months forward 

earnings, revenues, and capex. The averages of the I/B/E/S 

forecasts, or consensus estimates, are the established indus-

try standard and the designated performance benchmark for 

our analysis. For both the fundamental and I/B/E/S data, 

non-GAAP financial measures were used when available. 

The third group involves the price history of the companies’ 

publicly listed stock as well as 16 macroeconomic ratios to 

reflect the different regional markets’ economic perfor-

mance. These data are sourced from Refinitiv (formerly 

Thomson Reuters) are listed in Table 1. The model’s de-

pendent variables are composed of 48 ratios and datapoints 

from these three data groups that are readily available and 

generally accepted by market practitioners as standard in-

formation for company evaluation (Valentine 2011).  

 

Variables Description 
roic (TTM EBITDA - TTM Capex) / (Net 

Debts + Market Cap) 

roe TTM Net Profit / Common Equities 

ni_to_cfo TTM Net Profit / TTM Cash Flow  

inv_turnover TTM COGS / Total Inventory 

interest_to_earnings TTM Interest Expenses / TTM EBIT 

fwd_roic (TMF EBITDA - TMF Capex) / (Net 

Debts + Market Cap) 

fwd_ey TMF EPS / Period Close Price 

fa_turnover TTM Net Sales / Net PPE 

ebitda_to_ev TTM EBITDA / Enterprise Value 

earnings_yield TTM EPS / Period Close Price 

div_payout TTM Dividends Per Share / TTM EPS 

cash_ratio Cash & Short-term Investment / Total 

Current Liabilities 

capex_to_dda TTM Capex / TTM Depreciation, De-

pletion & Amortization 

ca_turnover TTM Net Sales / Total Current Assets 

gross_margin TTM Gross Margin 

pretax_margin TTM Pretax Margin 

debt_to_asset Total Debts / Total Assets 

cap_adequacy_ratio Capital Adequacy Ratio 

ni_ts CAGR (1/3/5-year) of Net Incomes 

sales_ts CAGR (1/3/5-year) of Net Sales 

pretax_margin_ts CAGR (1/3/5-year) of Pretax Margin 

cfps_ts CAGR (1/3/5-year) of Cash Flow PS 

stock_return YoY and QoQ of Stock Returns 

crudoil YoY Crude Oil Prices 

usinter3 YoY 3-month LIBOR 

usfrbpim YoY US Philadelphia Fed Index 

usrettotb YoY US Retail Sales & Food Service 

ushouse.o YoY US New Private Housing Starts 

usgdp...d YoY US GDP 

dollar_index YoY Dollar Index 

uscnper.d YoY US Personal Cons Expenditures 

gdp YoY GDP 

unemployment YoY Unemployment Rate 

ipi YoY Industrial Production Index 

cpi YoY Consumer Price Index 

reer YoY Real Effective Interest Rate from 

World Bank 

index YoY Equity Market Indices Returns 

interest_rate_3m 3-month Interest Rate 

interest_rate_10y 10-year Interest Rate 

Table 1: Model Input Variables 

For a few core datapoints, we use one-year, three-year and 

five-year growth rates (CAGR) in place of time series where 

necessary (e.g., machine learning models). For these data-

points we use non-overlapping periods—for example, aver-

age annual growth rate from five years back to three years 

back, from three years back to one year ago, and the past 

year. For stock returns, we use QoQ and 4Q back to 1Q back 

(=YoY) periods,  

 

 

Model Structure 
The inherent noise in company earnings would suggest 

the classification objective for the model. However, categor-

ical errors preclude ranking distance between incorrect fore-

casts—the distinction between large and small forecast er-

rors is lost. We utilize a “hybrid” ranking loss function by 



partitioning the target earnings into 10 equal-size deciles 

and assigning the decile medians to all of the target earnings 

in the particular decile for regression. The target earnings 

are defined as the relative earnings change: the yearly 

change in I/B/E/S trailing 12-month earnings (TTM Net In-

come) over the total company equity valuation (market cap-

italization), 

 

𝐸𝑡 =   𝑓 (
𝑇𝑇𝑀 𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑞+4 − 𝑇𝑇𝑀 𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑞

𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑞

) 

 

We employ five-fold cross-validation splits across com-

panies to minimize data snooping and data leakage (i.e., five 

independent models on non-overlapping 80/20 train/valida-

tion splits of the data). For each model, the stocks for train-

ing (and validation) will be distinct from the stocks for test-

ing; the train/test splits are not performed across time. The 

test sets are one-quarter rolling windows that form 21 sets 

from 2013Q1 (i.e., quarter ending 31 March 2013) to 

2018Q1. The mean absolute error (MAE) and R2 statistics 

are listed for the median forecast among the five cross-vali-

dation splits. MAE or optimizing for L1 loss functions are 

preferred due to the excess kurtosis in corporate earnings 

(Longstaff and Piazzesi 2004). For each section, as we ana-

lyze the performance of machine learning and deep learning 

models, there are at least five configurations of tests. Con-

figuration I is limited to a randomly selected 50% sample of 

our universe, limiting our sample size to 475 companies. 

Configuration II and further configurations consist of the en-

tire universe, expanding the dataset to the full 950 compa-

nies. Configuration III divides the dataset into industries 

(based on FTSE Russell ICB) and builds a separate inde-

pendent model for each industry group. This corresponds to 

market practice, with each research analyst usually being as-

signed to an industry or sector. Configuration IV involves 

incorporating the consensus estimates to model inputs in ad-

dition to the original inputs of the previous configurations. 

Configurations V and VI are ad hoc configurations as and 

when required by the section. All of our model implementa-

tions are available at:  

https://github.com/stepchoi/KDF21.git 

Machine Learning: Gradient Boosting Trees 

We focus on decision tree models, machine learning algo-

rithms that have been well established among the top algo-

rithms for data mining (Wu et al, 2008). The binary splits in 

tree-based models can provide more interpretability and ef-

ficiency than other machine learning or deep learning mod-

els. Boosted decision trees have been shown as the best 

overall learning algorithm for various types of data (Caruna 

and Niculescu-Mizil, 2006), and we apply LightGBM   

model  (Ke et al, 2017), a leading-edge tree-based model 

that incorporates random forests (Breiman, 2001) and gradi-

ent boosting (Friedman, 2001) with a leaf-wise (best-first) 

strategy.  

 The model results are in Table 2. We see an improvement 

in both MAE and R2 between the realized and model fore-

casts of earnings from increasing the sample size from 475 

to 950 stocks (configurations I and II). Evidently, all ma-

chine learning models will improve with larger sample size 

for training.  MAE and R2 also improve with the implemen-

tation of industry partitions (configuration III); R2 has im-

proved significantly and MAE is lower than the consensus 

estimates. Using only widely available data, the LightGBM 

model outperforms the average forecasts of future earnings 

from the leading industry practitioners with only the inno-

vation of modeling along industry partitions, something that 

is standard practice.  

Table 2: Gradient Boosting Tree Model Results 

 The I/B/E/S data that form the consensus estimates are a 

priori information as with all the other inputs for the 

LightGBM model. However, unlike the other inputs, they 

are not purely raw data. Instead, they are informed predic-

tions by finance professionals, usually with additional infor-

mation and insight (e.g., management changes, supply chain 

relationships) beyond what is available in standard financial 

statements. The inclusion of I/B/E/S data to the input varia-

bles should enhance performance; the informative value of 

the consensus estimates should be additive. Configuration 

IV confirms this, as the inclusion of consensus estimates to 

the model inputs improves the MAE and R2 to levels beyond 

other established methods in conventional finance literature 

(Ball and Ghysels 2017). Table 3 presents the comparison 

of MIDAS - Mixed Data Sampling (Ghysels, Santa-Clara, 

and Valkanov 2002), an econometric regression method 

with substantial literature in economic and finance (An-

dreou, Ghysels, and Kourtellos 2013), with the correspond-

ing statistics of configuration IV. Both results are from mod-

els that incorporate similar historical data and consensus es-

timates to forecast future earnings. Configuration IV is able 

to identify the value of I/B/E/S estimates to achieve a lower 

median absolute error ratio - the preferred statistic of the 

MIDAS earnings forecast research. (MABER: the ratio of 

median absolute error of model results over median absolute 

error of analysts' predictions.)  

Configuration MAE R
2

I 0.009745      0.1498         

II 0.009554      0.1794         

III 0.009283      0.2305         

IV 0.008612      0.2942         

V 0.008855      0.2866         

Consensus 0.009674      0.2583         



 

Table 3: MIDAS Results Comparison 

 This level of success is not specific to LightGBM but also 

applies to other gradient boosting algorithms. Configuration 

V is the equivalent application of XGBoost (Chen and Gues-

trin 2016), another recently developed model that incorpo-

rates gradient boosting. The XGBoost model fares slightly 

worse than LightGBM but still maintains accuracy levels 

significantly above the consensus benchmark. The limited 

sample size seems to suffice for gradient boosting trees to 

address the noisy HDLSS problem.  

Deep Learning: Fully Connected Networks 

and Recurrent Neural Networks 

We initiate the deep learning application with a fully con-

nected neural network (FCN), the standard deep learning ar-

chitecture. FCN is composed of N-layers, with each having 

nodes of bias/threshold weight parameters and an activation 

function. Each node in one layer is connected to the nodes 

in the subsequent layer. The nonlinear activation functions 

provide the capacity to estimate non-linear behavior, and 

full connectedness provides the potential for complex struc-

ture. With multiple layers, Lapedes and Farber (1987) and 

Cybenko (1988) asserted that the neural network could ap-

proximate any function: The FCN is a more powerful model 

that should be able to span LightGBM or XGBoost model 

capabilities. However, as we find, this is more of a “curse” 

than a blessing. 

 Our model is composed of three to six layers with four to 

16 nodes per layer. Hyperparameter optimization is per-

formed through Hyperopt (Bergstra et al. 2013), a sequential 

model-based hyperparameter optimization interface based 

on Tree-of-Parzen-Estimators. (The hyperparameters are 

optimized on the validation sets.) The results for configura-

tion I imply near randomness, with significant improvement 

in results in configuration IIa by doubling the training sam-

ple size (Table 4). To avoid potential overfitting, we force-

fully decrease the model size by reducing the layers and 

nodes to lower ranges during Hyperopt in configuration IIb. 

Reducing the model parameters with fewer layers and fewer 

nodes (from 7500+ to below 1200) in configuration IIb im-

proves both MAE and R2 significantly; narrow (minimal 

nodes) and shallow (minimal layers) improves FCN perfor-

mance, illustrating the curse of dimensionality. Further par-

titioning of the data by industry in configuration III reverts 

back to near randomness—the underperformance from 

smaller datasets is almost trivially self-evident. All three 

configurations struggle against the basic gradient boosting 

results. The potential for non-linear and complex structures 

in deep learning seems to be blunted by noisy HDLSS, and 

even reducing the model complexity is not adequate. 

 The addition of consensus estimates does not result in sig-

nificant improvement (configuration IV); while both MAE 

and R2 have improved, they are still far worse than every 

configuration of the previous section. Even relatively simple 

FCN models cannot adequately capture the informative 

value of consensus estimates. The only comparable results 

are in configuration V. Here we lean on the LightGBM mod-

els of the previous section to provide the top 15 important 

features, such as quarterly earnings and revenue. Only then 

does the FCN model overcome the curse of high dimension-

ality and produce meaningful results. Nonetheless, it still 

fails in comparison with gradient boosting models. 

Table 4: Deep Learning Model Results.  

  

 We propose two explanations for the underwhelming re-

sults. The first is more evident: FCN models do not explic-

itly model time series. Multiple growth rates were used as 

replacements for panel data. The second explanation in-

volves the heterogenous data types of model inputs. Recent 

research (Poggio, Banburski, and Liao 2020) shows that ap-

plying convolutional neural networks (CNN) on data with 

hierarchical locality leads to the exponential costs of dimen-

sionality becoming more linear. Our data unfortunately lack 

the structure or homogeneity of visual pixels or even stock 

price data. By combining macroeconomic data, stock price 

history, and company financials, the total input dataset re-

tains varying distributions and attributes with divergent fre-

quencies (quarterly or monthly or daily records). The expo-

nential dependence on the number of parameters for accu-

racy prevents neural networks from finding the hierarchical 

structure generated by gradient boosting models. This out-

come is most evident in the lack of significant improvement 

in accuracy of configuration V with the addition I/B/E/S 

consensus estimates. Deep learning models cannot even 

identify “good” information input.  

 We address both deficiencies in configuration VI by in-

corporating recurrent neural networks (RNN) structures. We 

Configuration MAE R
2 Model Parameters

I 0.010870 0.0799     1,831                     

II a 0.010602 0.0928     7,517                     

II b 0.010355 0.1175     1,167                     

III 0.010648 0.0545     1,194                     

IV 0.009960 0.1800     1,220                     

V 0.009264 0.2464     1,873                     

VI 0.009302 0.2734     1,643                     

Model MABER

Configuration IV 0.857      

Ball & Ghysels (2018) 0.898      

*MABER median absolute ratio. 



also repeat the use of the top 15 input variable (features) 

provided by LightGBM models and revert to standard year-

over-year rates for any previous compound annual growth 

rates. These features are ranked by the average LightGBM 

ranking across the different industry partition models. The 

top 15 were chosen because the other features were consist-

ently ranked lower across all the models. The features are 

listed in Table 5. The times series representation further re-

duces the input dimensionality to 10 features (including 

I/B/E/S consensus estimates), and we deploy gated recurrent 

units (GRU) (Cho et al. 2014) layers for each feature. 

Twenty consecutive quarters form a sequence, and each se-

quence is the input to predict the next quarter for each fea-

ture. Ten GRU models are simultaneously trained and the 

hidden state outputs are combined and passed into FCN lay-

ers for prediction. The model architecture is illustrated in 

Figure 1. This multi-GRU model (with LightGBM assist), 

not only models time series, but reduces the dimensionality 

of the inputs and facilitates the discovery of hierarchical 

structure among hidden states.  

 

Table 5: Feature Importance Rankings from LightGBM.  

 For these models of non-linear topology, multiple losses 

are usually required. For instance, the losses of each feature 

GRU is usually combined with the losses of the final FCN 

layer (the actual earnings forecast). But accuracy improved 

when we focused only on the final FCN losses. The GRU 

layers are being utilized for encoding the data, not predic-

tion, to allow the final FCN layers to learn the hierarchal 

structure of the data. Our tests included other encoders such 

as CNN or transformer layers, but the GRU “encoders” 

yielded the best results. The final multi-GRU deep learning 

model yields higher accuracy (in both MAE and R2) than the 

consensus benchmarks, albeit with help from the competi-

tion. This implies that lower dimensions and robust encod-

ing are both required before application of deep learning 

models on noisy HDLSS financial data. Unfortunately, the 

resulting accuracy measures still fare worse and the multi-

GRU model requires exponential more than computing re-

sources. LightGBM models take on average 4 minutes to 

converge on an 8 core Intel i7 CPU while the GRU model 

requires 4 minutes per epoch to go through on an RTX 2080 

GPU. Even assuming comparable results, gradient boosting 

trees would be highly preferred in actual application. 

Figure 1: Configuration V, GRU model.   

Conclusion 

In this paper, we present evidence against the application of 

deep learning models for earnings forecasting. For such 

noisy HDLSS problems, we offer gradient boosting models 

as a preferable solution. However, this work does not repre-

sent an exhaustive study on deep learning models in aggre-

gate. New developments in attention models (Vaswani et al. 

2017) and temporal convolutional networks (TCN) (Lea et 

Stock_return_1qa 6.7

Sales_ts 8.3

Stock_return_3qb 8.4

Pretax_margin_ts01 10

Sales_ts13 11.9

Capex_to_dda 13.5

Fwd_roic 13.8

Eps_ts01 14.1

Ebitda_to_ev 14.1

Cfps_ts01 14.6

Eps_ts35 14.8

Ni_to_cfo 15

Ibes_qcut_as_x 15.4

Pretax_margin_ts13 15.8

Pretax_margin_ts35 16.1

Name Feature Importance Rank



al. 2017) have shown significant improvements in time se-

ries modeling. Nonetheless, for problems such as company 

financials in which the data frequency is low and the sample 

size is limited, these complex models face problems with the 

requisite large number of model parameters. For homoge-

neous data, such as stock price data, in which the hierar-

chical structure is more obtainable (Mantegna 1999) and  

higher data frequencies  produce greatly larger sample sizes 

(tick or daily), attention and TCN models can achieve suc-

cess (Qiu, Wang, and Zhou 2020). But for other financial 

and economic data, for which the frequency is measured in 

months and quarters rather than minutes and days, deep 

learning might not be optimal. 

 In ongoing and future work, we plan to extend our analy-

sis to other financial and economic data and broaden the 

scope to a larger family of deep learning and machine learn-

ing models. 
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