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Abstract

Transfer learning has been successfully applied to the credit
risk domain to predict the probability of default for “new
to credit” individuals and small businesses. However when
the source and target domains differ, we propose a domain
adaptation approach to adjust the source domain features. We
find that adaptation improves model accuracy in addition to
the improvement by transfer learning. We propose and test a
combined strategy of feature selection and an adaptation al-
gorithm to convert values of source domain features to mimic
target domain features. We find that transfer learning im-
proves model accuracy by increasing the contribution of less
predictive features. Although the percentage improvements
are small, such improvements in real world lending would be
of great economic importance. Our contribution also includes
a strategy to choose features for adaptation and an algorithm
to adapt values of these features.

Introduction
Globally in 2014, 42% of all adults reported borrowing in
the past 12 months (excluding credit cards). In developing
economies three times as many adults borrowed from fam-
ily or friends as from a financial institution. Borrowing from
an institution has benefits over borrowing from family or
friends, by providing access to sufficient funds and likely
better credit terms under regulation (World Bank 2017). Ac-
cess to formal credit has become an issue for young adults
in developed countries too. Bankrate’s survey found that
58% of millennials (born between 1981 and 1996) in the
United States have been denied at least one financial prod-
uct because of their credit score (BankRate 2019). As well,
fintech-based financing products, such as Alipay, Affirm,
Klarna, Paypal Credit and Afterpay, have become popular
with millennials and Generation Z (born between 1997 and
2010). Can we leverage this “alternative lending” data to
improve prediction of credit behaviour and hence access to
credit for people with limited traditional credit history?

Transfer learning can be the bridge linking alternative
lending data and traditional credit history assessment, e.g.,
credit bureau scores. Suryanto et al. (2019) (Suryanto et al.
2019) showed transfer learning improved the accuracy of
credit scoring. To adopt this approach in the real world, two
questions need to be answered.

The first is to explain transferred models. Many juris-
dictions require credit decisions to be explained for anti-
discrimination and human rights purposes. For example,
the General Data Protection Regulation (GDPR) in the Eu-
ropean Union requires “meaningful information about the
logic involved” in automated decisions, providing an expla-
nation that enables a data subject to exercise their rights un-
der GDPR and human rights law (Selbst and Powles 2017).
SHAP (Lundberg and Lee 2017) is one of the most popular
methods for explaining machine learned models. In this pa-
per we apply SHAP to analyse the contribution of features
and the impact of transfer.

The second question is how to handle the difference in
features between source and target domains. For instance,
a source domain could be for a small short-term alternative
loan, but the target domain may be for large and long-term
instalment loans. Key features, such as loan amount, loan
terms, interest cover, etc. can differ between these domains.
We could use the progressive shifting contribution network
proposed in (Suryanto et al. 2019) that combines source and
target domain feature learning to improve model accuracy,
but a key question that remains is: can we adapt the features
before transfer learning to get more accurate models?

In this paper we develop an approach to this ques-
tion based on three approaches. First, we use a Kol-
mogorov–Smirnov (KS) test to quantify the difference be-
tween source and target domains, and use domain adapta-
tion to treat only features that differ substantially between
the domains before training. Second, after we find candi-
date features to be adapted, based on their KS differences,
we include other features that are highly correlated with the
candidate features and test the accuracy of models adapting
these feature combinations. Finally, we exclude from adap-
tation features related to a borrower’s credit history where
the adaptation would incorrectly impact the classification.
The rest of the paper is organised as follows. In Section we
describe key aspects of the problem and in Section related
work. In Section we elaborate details of the data and meth-
ods; in Section , the experimental results and in Sections
and discussion and conclusions.



Credit Scoring and Decisioning
A lender’s goal is to maximise the risk adjusted return within
their risk appetite. Accurately assessing credit risk is key
to balancing risk and return. The concept of Expected Loss
(EL) is commonly used to measure credit risk. EL is mainly
determined by the Probability of Default (PD), Exposure at
Default and Loss Given Default. The key prediction model
is a credit scoring model, which calculates the PD of a loan
or loan application. Inputs to a credit scoring model are at-
tributes of the person or entity applying for the loan, such
as credit history, credit bureau score and employment, and
requested loan attributes, such as loan amount and term.

Lenders then use the credit score and other decision rules
to decide whether to approve or decline a loan application,
and for those approved what to offer in credit terms. De-
cision rules typically include: eligibility, e.g., age limit, re-
siding jurisdiction; expert assessment of risks, e.g., manual
reviews and override; credit scoring and rating, i.e. mapping
the credit score to different credit ratings; and a decision ta-
ble or scale, e.g., decline under a certain rating level, or set
the maximum loan amount at certain ratings.

In this paper we use a score from 0 to 1 for PD models,
which is an estimated probability of default, calibrated using
test data. Our focus is on using transfer learning to predict
PD, so we measure the accuracy of our credit scoring mod-
els using the Area Under Receiver Operating Curve (AUC).
This metric is used to directly assess model accuracy, based
on PD, without needing to convert the PD into a binary
“yes” or “no”. The quality of binary classifications depends
not only on the PD model, but also on decision rules such
as those above.

Related Work
Transfer learning and domain adaptation are mostly applied
in computer vision (Wang and Deng 2018), speech recog-
nition (Deng et al. 2013), and natural language processing
(Mou et al. 2016). Transfer learning has also been proposed
to improve reinforcement learning in the Atari game do-
main. Rusu et al. (2016) (Rusu et al. 2016) presented the
Progressive Network, a transfer learning approach based on
a neural network where the network was initially trained
using source domain data. Next, one or more of the last
layers of the network were retrained using target domain
data (Rusu et al. 2016). Using a similar approach, Suryanto
et al. (Suryanto et al. 2019) proposed transfer learning based
on the progressive network configuration, applied to credit
risk where the contribution of the source and the target do-
mains can be shifted to optimize the model performance.
There have been other recent studies applying transfer learn-
ing in the credit risk domain, mostly for credit scoring
rather than credit decisioning (Beninel, Waad, and Mufti
2012), (Stamate, Magoulas, and Thomas 2015), (Suryanto
and Compton 2004).

While the terms “transfer learning” and “domain adapta-
tion” have been used interchangeably, we use transfer learn-
ing when the focus is the modelling configuration, and do-
main adaptation when the focus is on transforming the data.
There are only a few published studies on domain adaptation

for credit risk, e.g., Huang et al. (2018) proposed domain
adaptation for transforming the data distribution (Huang and
Chen 2018). In other domains approaches such as Balanced
Distribution Adaptation (Wang et al. 2017) and adapting
without target label have been used (Kouw and Loog 2019;
Zhang, Li, and Ogunbona 2018; Huang and Chen 2018).

In this paper we adopt a Progressive Network configura-
tion for transfer learning, similar to Rusu et al. (Rusu et al.
2016). The contribution of our paper is a strategy to apply
domain adaptation to the source data when target data with
labels is limited, and to apply both domain adaptation and
transfer learning to credit risk.

Data and Methods
Data
In this paper, we used data from the “lendingclub.com”
dataset1 to illustrate our approach. We used the purpose of
the loans to define different domains. Loans for different
purposes have different default rates and different loan pa-
rameters, such as the typical loan amount and the terms. The
experiments in this paper were based on data for three dif-
ferent purposes:

• Data where the purpose of the loan was credit card and
debt consolidation, which is referred to as CD.

• Data where the purpose of the loan was medical, referred
as MD.

• Data where the purpose of the loan was small business
lending, referred as SB.

In this empirical study, we used Lending Club (LC) data
between 2007 and 2011, the early period of the Lending
Club, to mimic a lender starting to offer new loan products
to new customer segments. We used the CD dataset as the
source domain, as it had sufficient instances, and the MD
and SB datasets as target domains for transfer learning. Do-
main details are illustrated in Table 1.

Table 1: Loan domains by purpose

No Domain Number of Rows Default Rate
1 CD 28,813 14.03%
2 MD 695 15.25%
3 SB 1,813 26.16%

To predict loan outcomes, we selected the 12 input fea-
tures listed in Table 2. The PD model predicts whether loans
should be classified as default or not. We use loan status to
determine this outcome, as shown in Table 3. Based on our
experience in credit risk, we only include loans with the loan
status of Charged off or Late (31-120 days) as default, i.e.,
bad loans, and Fully Paid as good loans. We exclude current
loans (not due yet), and loans less than 30 days late, which
will normally be repaid but for which there are no results
yet.

1See https://www.lendingclub.com/info/download-data.action



Table 2: Input features

No Short Name Feature Name & Description
1 term 36m Term 36 month; The 36-month pay-

ment on the loan
2 term 60m Term 60 month; The 60-month pay-

ment on the loan
3 grade n Grade; Lending Club (LC) assigned

loan grade
4 sub grade n Sub grade; LendingClub assigned

loan subgrade
5 int rate n Interest rate; Interest rate on the loan
6 revol util n Revolving util. rate; Revolving line

utilisation rate: the amount of credit
relative to all available revolving
credit

7 emp length n Employment Length; Employment
length in years: Values between 0 and
10 where 0 means less than one year
and 10 means ten or more years.

8 dti n Debt to income ratio; The ratio of
the borrower’s total monthly debt
payments on the total debt obliga-
tions, excluding mortgages and the
requested LC loan, to the borrower’s
self-reported monthly income

9 installment n Installment; The monthly payment
owed by the borrower if the loan is
made

10 annual inc n Annual income; The combined self-
reported annual income provided by
the co-borrowers during registration

11 loan amnt n Loan amount; The listed amount of
the loan applied for. If at some time,
the credit department reduces the
loan amount, this will be reflected in
this value.

12 cover Cover; A ratio calculated using the
annual income on the loan amount
(annual inc n/loan amnt n)

Transfer Learning
In this paper we use one of the neural network configura-
tions proposed in (Suryanto et al. 2019) for transfer learn-
ing. The neural network comprises an input layer with 12
input nodes, aligned with 12 input features. The output layer
consists of one output node. The output is a score between 0
and 1. This score is calibrated to be the probability of default
(PD) as illustrated in Fig. 1. As our aim is to accurately pre-
dict defaults in the target domain, we first trained the model
using source domain data, and then retrained the last layer
with target domain data. We tested the accuracy of the trans-
ferred model using target domain data.

For comparison, we trained a “target model” using a sim-
ilar neural network configuration with purely target domain
data, and tested this on other target domain data. Suryanto et
al. (2019) tested this configuration with state-of-the-art ma-

Table 3: Outcome to predict: default or not

No Loan Status Description Outcome
1 Charged off The loan has not

been paid
1

2 Fully Paid The loan has been
fully paid

0

3 Current Payment is not due
yet

excluded

4 In Grace
Period

Payment is less than
16 days late

excluded

5 Late (16-30
days)

Payment is late be-
tween 16 and 30 days

excluded

6 Late
(31-120
days)

Payment is late be-
tween 31 and 120
days

1

Figure 1: Transfer learning setup: layers B, C, D, and E are
first trained using the Source Domain, then the last layer
is retrained using the Target Domain; more precisely, the
weights of the edges between layers D and E are retrained.

chine learning techniques for credit risk, e.g., gradient boost-
ing machines, and the performance is equivalent (Suryanto
et al. 2019). We used 10-fold cross validation, repeated 10
times using different random seeds, for all training and test-
ing.

To answer the two questions on explainability and domain
differences, we designed a set of experiments as described in
the following sections.



Domain Differences
To understand the differences between source and target do-
mains, we use Kolmogorov–Smirnov (KS) tests to quantify
the difference for each feature. The KS test can be used to
compare two samples without making an assumption about
the distribution of data. The null hypothesis is that the two
samples, source and target data, come from the same dis-
tribution. The KS test produces a KS-statistic and p-value.
The KS-statistic represents the maximum distance between
the source data and the target data distributions. The p-value
represents the significance level, e.g., less than 0.05. We
used the maximum distance between the source data and
the target data distribution curves (KS-statistic) to provide
insights about the differences in features between these two
domains.

Domain Adaptation
Domain adaptation aims to transform the source data distri-
bution to be similar to the target data distribution. The inten-
tion is to use latent features constructed using source data to
complement the target data. We propose the following ap-
proach to adapt the feature distribution of the source data to
mimic the feature distribution of target data. For each fea-
ture, the adaptation steps are:

1. Group the source data and the target data in N quantiles,
where N should be selected to ensure that we have suffi-
cient data for each quantile, e.g., more than 50 samples. In
this study, we selected N = 10, after experimenting with
various N values.

2. For each corresponding source and target quantiles, cal-
culate scale, then adapt/adjust the source feature values:

scale =
(max(target value)−min(target value))

(max(source value)−min(source value))
(1)

offset = (source value−min(source value) ∗ scale
(2)

adapted source value = min(target value) + offset
(3)

The adapted source features are used to initially train the
neural network before the last layers are retrained using the
target features.

Based on observation of explainer models and feature dif-
ferences, we adapted different sets of features before train-
ing, and then trained and tested using the method described
in Section on Transfer Learning. We then compared the per-
formance of models (using AUC) with different adaptation
sets, and transferred models without adaptation. We found
that adapting all features significantly reduces accuracy, so
we tried different combinations of features to adapt to find
the most accurate adapted models.

Experiments and Results
Transfer Learning
Table 4 shows the AUC comparison for target and the trans-
ferred model. The accuracy of the transferred models was
better than for the target models; AUC improved 0.042 or

7% for the MD domain, and 0.0224 or 3.6% for the SB do-
main, respectively. This is in line with the results of Suryanto
el al. (Suryanto et al. 2019)

Table 4: Target model vs. transferred model

Domain & Experiment AUC Improve
ment

p-
value

CD to MD; Training using
Target only

0.5971
±0.08

CD to MD; Training using
Source then retraining the

last layer using Target

0.6391
±0.09

0.0420
(7.0%)

<0.01

CD to SB; Training using
Target only

0.6194
±0.05

CD to SB; Training using
Source then retraining the

last layer using Target

0.6419
±0.05

0.0224
(3.6%)

<0.01

To understand the contribution of “cover”, we calculated
KS-statistics which represents the difference in value dis-
tribution for “cover” between source and target domains as
shown in Figure 2 where source was CD and target was MD
(KS-statistics: 0.2736) and Figure 3 where source was CD
and target was SB (KS-statistics: 0.0585). The X-axis rep-
resents the value of “cover” and the Y-axis represents the
number of loans. Further results are presented in following
sections.

Figure 2: Distribution of cover: CD vs MD



Figure 3: Distribution of cover: CD vs SB

Domain Difference

Table 5 lists KS-statistics for CD vs. MD as well as CD vs.
SB. It shows that some features were very different between
source and target domains, but some were similar. It also
shows that different pairings of source and target domains
had different patterns in feature differences. For example,
“cover” was very different between CD and MD with a KS-
statistic of 0.2729, but similar between CD and SB with a
KS-statistic of 0.0502.

Table 5: KS of input features

CD vs. MD CD vs. SB
No Short Name KS

stats
KS p-
value

KS
stats

KS p-
value

1 term 36m 0.0407 <0.24 0.0357 <0.20
2 term 60m 0.0407 <0.24 0.0357 <0.20
3 grade n 0.0792 <0.01 0.0984 <0.01
4 sub grade n 0.0884 <0.01 0.1069 <0.01
5 int rate n 0.0941 <0.01 0.1033 <0.01
6 revol util n 0.2248 <0.01 0.2292 <0.01
7 emp length n 0.0242 <0.85 0.0749 <0.01
8 dti n 0.1502 <0.01 0.2295 <0.01
9 installment n 0.3005 <0.01 0.0671 <0.01

10 annual inc n 0.0670 <0.01 0.0906 <0.01
11 loan amnt n 0.2899 <0.01 0.0813 <0.01
12 cover 0.2736 <0.01 0.0585 <0.01

Domain Adaptation
To further understand the contribution of “cover”, we tested
our proposed domain adaptation function on “cover”. Be-
fore we trained the transfer model on the source data, we
adapted cover on source data to make it similar to the tar-
get data, and then applied the transfer learning technique to
produce an “adapted” and transferred model. The AUC tests
for these adapted and transferred models are listed in Table
6 where they are compared to the transferred model without
adaptation. We have run paired t-tests to test the improve-
ments shown in table 6, 7, 8; the improvements were all sta-
tistically significant with p-values <0.01. T-tests were ap-
propriate because this data was normally distributed. Adapt-
ing cover works for CD to MD transfer with an AUC 0.01
(1.6%) higher than the transfer-only model, but AUC de-
creases for a CD to SB transfer.

Table 6: Adapted model vs. transferred model

Domain &
Experiment

AUC Improve
ment

p-
value

CD to MD;
Transfer only

0.6391
±0.0856

CD to MD;
Transfer with
cover adapted

0.6491
±0.0824

0.0100
(1.6%)

<0.01

CD to SB;
Transfer only

0.6419
±0.0509

CD to SB;
Transfer with
cover adapted

0.6361
±0.0502

−0.0058
(−0.9%)

<0.01

We tested various permutations of features to adapt to
find the most accurate model for the CD to MD transfer,
and to establish an optimal strategy for seeking the most
accurate adapted model. The experiments on the CD to
MD transfer are listed in Table 7. Adapting all features, or
adapting credit grade and related features, significantly re-
duced model accuracy, with AUC 0.1771 (27.7%) or 0.1756
(27.5%) lower than the transfer-only model, respectively.
Adapting only features with a high KS-statistic (over 0.15),
i.e., revolving utility, debt to income ratio, installment, loan
amount, and cover, improved accuracy with AUC 0.0172
(2.7%) higher than the transfer-only model. Adding related
features, i.e., annual income (annual inc n) – which is used
to derive cover (a high KS feature), further improved accu-
racy, with AUC 0.0209 (3.3%) higher than the transfer-only
model. Removing credit history features that are intrinsic to
the borrower, i.e., revolving utility and debt to income ratio,
produced an even more accurate model, with AUC 0.0257
(4.0%) higher than the transfer-only model.

Grade, sub-grade, revolving utility (revol util n), and debt
to income ratio (dti n) are features derived from credit his-
tory, which are intrinsic to the borrower and are usually
highly correlated with the lending outcome, i.e., default or
not. The interest rate in the lending club data is derived di-
rectly from grade and sub-grade, so we consider it as a credit
history feature in our experiment.



Table 7: Adapted model vs. transferred model in CD to MD
transfer

Experiment AUC Improve
ment

p-
value

Transfer only 0.6391
±0.0856

Adapt all features 0.4620
±0.3048

−0.1771
(−27.7%)

<0.01

Adapt credit grade
and related features,
i.e. grade, sub-grade,

interest rate

0.4635
±0.3052

−0.1756
(−27.5%)

<0.01

Adapt features with
high KS, i.e.

revolving utility,
debt to income ratio,

installment, loan
amount and cover

0.6563
±0.0806

0.0172
(2.7%)

<0.01

Adapt features with
high KS and related

features, i.e.
revolving utility,

debt to income ratio,
installment, loan

amount, cover and
annual income

0.6600
±0.07417

0.0209
(3.3%)

<0.01

Adapt features with
high KS and related
features less credit
history features, i.e.

installment, loan
amount, cover and

annual income

0.6649
±0.0731

0.0257
(4.0%)

<0.01

The AUC comparison with the transfer-only model is
shown in Table 8. Adapting all features, or credit grade re-
lated features, significantly reduced model accuracy, with
AUC 0.123 (19.3%) or 0.1106 (17.2%) lower than the
transfer-only model, respectively. We tested adaptation of
the features that we adapted for the most accurate model
of the CD to MD transfer, which have a low KS-statistic
from CD and SB comparisons. This adapted model was
slightly less accurate, with an AUC 0.0015 (0.2%) lower
than the transfer-only model. Adapting features with a high
KS-statistic, i.e., revolving utility and debt to income ratio,
improved model accuracy slightly, with AUC 0.0018 (0.3%)
higher than the transfer-only model. These two features do
not have related features, and both were credit history fea-
tures, so we could not improve accuracy further as we did
with the CD to MD transfer.

Additionally, we investigated the explainability of the
most accurate models using SHAP. Figures 4 and 5 show the
feature contributions of the most accurate adapted models
comparing to the source and target models. Through domain
adaptation, the contribution of weak features increased in
the most accurate adapted models. For the CD to MD trans-

Figure 4: Feature contribution of the most accurate adapted
model in CD to MD transfer

Figure 5: Feature contribution of the most accurate adapted
model in CD to SB transfer

fer, the contribution of annual income, cover, installment and
loan amount increased. For the CD to SB transfer, the con-
tribution of annual income, term 36 months or 60 months,
cover, employment length, installment and loan amount in-
creased.

To evaluate the effectiveness of our adaptation approach
we compared KS values before and after adaptation for the
most accurate models, as shown in Table 9. The reduction
in KS-statistics was between 44.8% and 90.3%, and for fea-
tures with high KS-statistics (over 0.15) the reductions were
all above 67.4%. Our adaptation approach successfully re-
duced the differences between the distribution of the source
data and the target data.

Discussion
Transfer Learning improves model accuracy through gen-
erating intermediate features from the source domain to be
selected for retraining on the target domain. This interme-
diate features generation concept is similar to “self taught
learning” proposed by Raina et al. (2007) (Raina et al.



Table 8: Adapted model vs. transferred model in CD to SB
transfer

Experiment AUC Improve
ment

p-
value

Transfer only 0.6419
±0.0509

Adapt all features 0.5189
±0.1666

-0.123
(-19.2%)

<0.01

Adapt credit grade
and related features,
i.e. grade, sub-grade,

interest rate

0.5313
±0.1624

-0.1106
(-17.2%)

<0.01

Adapt features used in
CD to MD transfer,
i.e. installment, loan

amount, cover, annual
income

0.6404
±0.0475

-0.0015
(-0.2%)

<0.01

Adapt features with
high KS, i.e. revolving

utility and debt to
income ratio

0.6437
±0.0495

0.0018
(0.3%)

<0.01

2007), which constructed higher-level features using unla-
belled data, except that in this paper we used labelled data
from the source domain.

The contribution of a weak feature from the target domain
increased because it was complemented by new intermediate
features from the source domain. We tested an adaptation
approach taking the outcome label into consideration. But
this did not improve model accuracy. The reason was that
the population of positive (outcome=1) cases was too small
in the already small target dataset.

Adapting strong credit history features, such as grade and
sub-grade, significantly reduced model accuracy, while re-
moving features related to credit history from the adapta-
tion list improved model accuracy. Adapting credit history
related features without consideration of the outcome label
generates unrealistic instances, e.g., changing a borrower’s
credit grade from high to low without adjusting the outcome
from not default to default. These unrealistic instances can
negatively impact model accuracy.

Conclusion
Domain adaptation with the right set of features further im-
proved the accuracy of transfer learning models. However,
adapting all features normally reduces model accuracy sig-
nificantly. Reasons to select features to adapt include: dif-
ferences in feature distribution between source and target
domain, quantified by KS-statistics; relationships to already
selected features; and domain specific knowledge, e.g., the
credit history features intrinsic to the borrowers.

Through domain adaptation, the contribution of weaker
features increased in the most accurate adapted models. An
adaptation approach that significantly reduces KS-statistics
has been critical in producing a successful domain adapta-
tion algorithm.

Table 9: Kolmogorov-Smirnov test to compare source data
and target data, before and after the source data is adapted,
ACD is the abbreviation for Adapted Credit card and Debt
consolidation data.

CD to MD
No adaptation

ACD to MD
with adaptation

Feature KS-
stats

p-
value

KS-
stats

p-
value

Reduc
-tion

installment 0.3005 <0.01 0.0293 <0.64 90.3%
annual inc 0.0670 <0.01 0.0369 <0.34 44.8%
loan amnt 0.2899 <0.01 0.0681 <0.01 76.5%

cover 0.2736 <0.01 0.0892 <0.01 67.4%
CD to SB

No adaptation
ACD to SB

with adaptation
Feature KS-

stats
p-

value
KS-
stats

p-
value

Reduc
-tion

revol util 0.2292 <0.01 0.0536 <0.01 76.6%
dti 0.2295 <0.01 0.0301 <0.39 86.9%

For future work, the proposed strategy to select features
for domain adaptation produces more accurate credit scoring
models, but execution of the strategy requires human inter-
vention in observing and applying domain knowledge. We
will further explore methods to automate this selection strat-
egy, so it can be a pre-processing step for fully automated
transfer learning.

The use of alternatives to KS statistics to estimate the dis-
tance between distributions, such as KL-divergence, should
be investigated. SHAP is an indirect method to understand
the impact of latent intermediate features. Further study ex-
ploring and explaining latent intermediate features could im-
prove our understanding of transfer learning and domain
adaptation, and better meet transparency and compliance re-
quirements.

Finally we note that although the significant improve-
ments in accuracy demonstrated are small in terms of per-
centage improvements, such improvements in real world
lending could be of substantial economic importance in re-
ducing lenders’ losses due to loan defaults.
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