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Abstract

Stock prediction aims to assess future price trends and as-
sist investment decisions. With the recent success of graph
convolutional networks (GCNs) in modeling relational data,
they have shown promise for stock prediction too. However,
vanilla GCNs lacking the ability to capture long-range depen-
dencies in graphs and have not fully utilized the structured
knowledge with data available. In this paper, we propose a
novel framework of Deep Augmented Relational Stock Pre-
diction (AR-Stock). We first detect the long-range links using
pre-trained knowledge graph embeddings, leading to a new
geometrically augmented edge type into the provided stock
market graph. We then construct the GCN model on this aug-
mented graph, that predicts each company’s stock prices by
leveraging its related corporations; specifically, to train the
GCN better over this complex graph, we introduce two novel
self-supervised regularizers (graph partition and graph com-
pletion) to inform the model with the global and local topol-
ogy features. Unifying the above ingredients, AR-Stock has
the unique strength in capturing long-term and hidden graph
node dependencies better. Experiments on two popular stock
market datasets, NASDAQ and NYSE, demonstrate the pre-
diction superiority of AR-Stock. Particularly, in terms of the
investment return ratio, AR-Stock improves 65.77% in NAS-
DAQ, and 30.48% in NYSE, respectively over state-of-the-
art models.

Introduction
Machine learning (ML) for financial market predictions,
e.g., stock prices, has recently witnessed a surge of in-
terest. Despite this cross-field enthusiasm, naı̈vely mod-
eling a stock price as an isolated time series is appar-
ently sub-optimal, as it ignored the rich inter-market and
inter-company relations among stocks. For example, to
predict a certain company’s stock price, professional in-
vestors will thoroughly draw evidence ranging from its sup-
plier/customer information (a.k.a, “short-range” or local de-
pendency); to the entire industry, market, policy ad other
macroeconomic factors (a.k.a, “long-range” or global de-
pendency). Therefore, making better market predictions crit-
ically hinges on mapping this connectivity of companies and
events and then utilizing this map. Those rich relations make
the stock market a complex knowledge graph.
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Figure 1: Results of three metrics (marked by three discrete coor-
dinates on the y-axis) on the NASDAQ dataset with different meth-
ods. For each metric, we normalize all numbers using the top per-
former’s. Then we normalize metrics with an exponential function.

Real data often come naturally in the form of graphs,
e.g., social networks and gene expression networks. Graph
convolutional networks (GCNs) (Kipf and Welling 2016;
Gilmer et al. 2017; You and Shen 2020) have gained in-
creasing popularity in addressing those graph-based appli-
cations. A GCN stacks multiple graph convolution opera-
tors, and learn node representations by recursively aggre-
gating information from their layer-wise neighbors. Typical
GCN tasks include graph classification (Ying et al. 2018),
node classification (Kipf and Welling 2016), link prediction
(Zhang and Chen 2018), and collaborative filtering (Berg,
Kipf, and Welling 2018). Lately, GCNs have achieved pre-
liminary success in stock market prediction, by considering
it as a node-level regression task (Feng et al. 2019; Chen,
Wei, and Huang 2018).

Despite the demonstrated promise, GCNs suffer from sev-
eral inherent limitations, constituting a major gap in accu-
rately characterizing the huge, complex, and dynamic stock
market. Specifically, GCNs notoriously lacks the ability to
capture long-range dependencies over large graphs; even for
local neighborhoods, the neighbor aggregation process of
GCN may fail to well preserve the node’s structural informa-
tion well (Kondor et al. 2018). This poses significant chal-
lenges to modeling the aforementioned “long-range” and
“short-range” market factors. Moreover, the few-label prob-
lem is common in graph-structured data, which is difficult to
be addressed with GCN solely. In view of that, we introduce
two key innovations into GCN-based stock prediction:



• We firstly exploit a geometric augmentation approach to
discover hidden long-range dependencies between stocks
and to enrich the sparse market graph. Specifically, we uti-
lize the knowledge graph to generate entity embeddings
for stocks that encode various relation patterns, leading
to new geometric edges being hallucinated to the original
graph.

• We secondly leverage self-supervised learning to facili-
tate large GCN training, and to enforce global and local
graph structure awareness respectively. Self-supervised
learning was popular in convolutional neural networks
(CNNs) (Chen et al. 2020), but not investigated in GCNs
until lately (Sun, Lin, and Zhu 2020). We present two new
dedicated self-supervision techniques for GCNs: graph
partition and graph completion, and show them improv-
ing our GCN generalization.

We name our framework as Deep Augmented Relational
Stock Prediction (AR-Stock). It is then applied to the tasks
of stock price prediction (i.e., predictive regression of future
stock prices) and stock returns ranking (e.g., identification of
the highest-return stock). Figure 1 shows the results for three
metrics of AR-Stock compared to the baselines. We per-
form extensive experiments on stocks listed in two datasets:
NASDAQ and NYSE. In all metrics considered, AR-Stock
substantially outperforms state-of-the-arts. For instance, in
terms of the investment return ratio, AR-Stock improves
65.77% in NASDAQ, and 30.48% in NYSE, respectively
over existing alternatives.

RELATED WORK
Stock Price Prediction
Stock price prediction is considered one of the most impor-
tant problems in finance domain (Bao, Yue, and Rao 2017;
Zhang, Aggarwal, and Qi 2017; Hu et al. 2018; Zhao et al.
2017; Nguyen and Shirai 2015). Traditionally, only the past
information from the same source as the predicted target is
taken into account. Bao, Yue, and Rao (2017) predict the
next-day price of stocks based on the historical values by
regarding the historical stock prices as a time serie and de-
compose it with Wavelet transform. Stacked Autoencoder
(SAE) is designed to filter out the noises in the frequency
domain, and the final prediction is made after a LSTM net-
work. Zhang, Aggarwal, and Qi (2017) proposed State Fre-
quency Memory (SFM) which combines LSTM network
with Fourier transform to capture the multi-frequency trad-
ing patterns from past market data to make long and short
term predictions over time. Instead of just using the past se-
quential information, Hu et al. (2018) taking financial news
as input as well by devising Hybrid Attention Networks
(HAN) to attentively aggregate both the stock related news
information and stock sequential behaviors into a unified
representation.

Recent trends demonstrate to incorporate different
sources of information, exploiting the dependency relation-
ship in the market to further assist prediction. Especially,
the dependency information is naturally modeled as the
adjacency matrix of a graph, facilitating the utilization of
graph convolutional networks (GCNs) (Matsunaga, Suzu-
mura, and Takahashi 2019; Feng et al. 2019). The feasibility

of vanilla GCNs is verified in (Matsunaga, Suzumura, and
Takahashi 2019) for stock prediction across different mar-
kets and longer time horizons using rolling window analy-
sis. Feng et al. (Feng et al. 2019) propose temporal GCN to
incorporate the relational information into stock modeling
and use temporal attention to encode the relation-strength
function to make GCN time-sensitive. They are also the first
to formulate stock prediction as a ranking task, targeting at
directly predicting which stock is more favored in terms of
return ratio.

Graph Convolutional Networks
Graph convolutional networks (GCNs) have emerged in re-
cent years for addressing applications of graph-structured
data, such as social network processing and molecule repre-
sentation learning (You, Ying, and Leskovec 2019; Kipf and
Welling 2016; Hamilton, Ying, and Leskovec 2017; Ying
et al. 2018; Veličković et al. 2017; Schlichtkrull et al. 2018;
You et al. 2020b; Liu, Gao, and Ji 2020). Under the frame-
work of message passing mechanism (Gilmer et al. 2017),
GCN adopts mean pooling to aggregate the neighborhood
information and updates representations layer-by-layer re-
cursively (Kipf and Welling 2016), with several powerful
variants proposed such as GraphSAGE (Hamilton, Ying, and
Leskovec 2017) and GAT (Veličković et al. 2017). To im-
prove GCN for capturing long-range dependencies in dis-
assortative graphs, a geometric aggregation scheme is pro-
posed in (Pei et al. 2020) to enhance the graph convolution,
benefiting from a continuous space underlying the graph.

Self-Supervised Learning
Self-supervision is a promising technique for learning more
transferable, generalized and robust representations from
unlabeled data (Zhai et al. 2019; Kolesnikov, Zhai, and
Beyer 2019; DeTone, Malisiewicz, and Rabinovich 2018;
Goyal et al. 2019; Kocabas, Karagoz, and Akbas 2019; Liu
et al. 2019) and is only investigated in (Sun, Lin, and Zhu
2020; You et al. 2020c,a; Jin et al. 2020; Zhu, Du, and Yan
2020) for GCN recently. It assists model training with the
complementary pretext task through pre-training or multi-
task learning, which is carefully designed in order to enforce
learning down stream-related semantics features. A number
of pretext tasks have been proposed for CNNs, including
rotation (Gidaris, Singh, and Komodakis 2018), exemplar
(Dosovitskiy et al. 2014), jigsaw (Noroozi and Favaro 2016)
and relative patch location prediction (Doersch, Gupta, and
Efros 2015). In GCN, using node clustering as the self-
supervised task is proposed in (Sun, Lin, and Zhu 2020),
where vertex attributes are utilized to group vertices with
similar embeddings, achieving state-of-the-art performance
in semi-supervised node classification. We notice that in
graph-structured data, rich structure information is under-
explored yet, leading to our innovations.

Deep Augmented Relational Stock Prediction
Problem Setting
Let the matrix Xt = [xt−S+1, ..., xt]T ∈ RS×D denote the
stock sequential input feature, where S is the length of input
sequence andD is the feature dimension,N is the number of
stocks and Xt ∈ RN×S×D represents the sequential features



of all the N stocks at time step t. The problem of stock pre-
diction (i.e., price movement classification and price regres-
sion) is to learn a prediction function yt+1 = f(Xt), map-
ping a stock’s historical feature to the outcomes at time-step
t. Specifically, we simultaneously predict the stock prices
and rank their relative order, to select higher-ranked (more
profitable) stocks, through incorporating each company’s
own input sequence with relationships among all N compa-
nies. Assuming there are K types of relationships between
companies, the pairwise relation between two stocks can be
represented by a multi-hot binary vector aij ∈ RK where
the m-th entry of aij is 1 if there is an edge of type m be-
tween stock i and stock j, otherwise, them-th entry of aij is
0. Therefore we formulate N stocks as vertices of a graph,
and represent the complicated relationship among them as
an adjacency matrix A ∈ RN×N×K where the i-th row and
j-th column is aij .

Given N stocks with their sequential input features
Xt ∈ RS×D and their multi-hot binary adjacency matrix
A ∈ RN×N×K, our proposed framework, Deep Augmented
Relational Stock Prediction (AR-Stock) aims to predict the
close price of all stocks next day, and to rank the predicted
return ratio and select the highest-revenue stocks.

Preliminary
Sequential Embedding Because stock markets are tem-
poral volatile and dynamic, modeling the history of each
stock is important for predicting future prices. Therefore, we
use a sequential embedding layer to capture the sequential
information in the historical stock values. Following (Feng
et al. 2019), we choose LSTM because to capture the crucial
long-term temporal relationships and factors of each stock.
Therefore, we feed the historical sequential data of stock i
at time-step t (Xt

i ) to the LSTM network and take the last
hidden state (eti) as the sequential embedding of a stock at
time t, i.e., we have,

Et = LSTM(Xt) (1)
where Et = [et1, ..., e

t
N]

T ∈ RN×Udenotes the initial tem-
porary embeddings of all stocks at time t, and U is the di-
mension of embedding.
Temporal Graph Convolutional Network To model the
relationships between different stocks, Feng et al. (Feng
et al. 2019) propose temporal graph convolution, the vari-
ant of which with the best performance in (Feng et al. 2019)
is introduced to our framework.

Given N stocks with their sequential embeddings Et ∈
RN×U (i.e., the output of sequential embedding layer) and
their multi-hot binary relation encodings A ∈ RN×N×K,
the aim of temporal graph convolution is to learn the em-
beddings Et ∈ RN×U that encode the relationship infor-
mation between the stocks. To address the problem that the
stock market is highly dynamic, they assume the strength of
a relation are continuously evolving and propose to combine
the temporal information and the relation information. The
time-aware embedding propagation in the stock market is
defined as follows:

eti =
∑

{j| sum(aij)>0}

g
(
aij , e

t
i, e

t
j

)
dj

etj (2)

where g is the weighting score and d is the normalization
factor. The relation strength g is estimated by feeding the
sequential embeddings and the relation multi-binary vector
into a fully connected layer as:

g
(
aji, e

t
i, e

t
j

)
= φ

(
wT
[
et

T

i , e
tT

j , a
T
ji

]T
+ b

)
(3)

where w ∈ R2U+Kand b ∈ R1 are model parameters to be
learned; φ is the activation function.

From Graph to Augmented Graph: Discovering
Long-Range Dependencies
Graph convolution networks (GCNs) lose the structural in-
formation of nodes in neighborhoods and lacking the abil-
ity to capture long-range dependencies (Pei et al. 2020). To
tackle this disadvantage, the first component of AR-Stock is
geometric augmentation, which detects the structural neigh-
borhood of each node in the stock knowledge graph and de-
fine a new relation type to represent the structural relation-
ship. Then we propose an aggregation schema to unify the
original knowledge graph relation and the proposed struc-
tural relationship.
Structural Neighborhood We first introduce how to de-
fine the structural neighborhood. Different from vanilla
GCNs dependent on local dependency, we provide global
information w.r.t the geometric structure preserved in the
latent space of unsupervised graph embedding models.
Here we adopt the state-of-the-art knowledge graph em-
bedding method RotatE (Sun et al. 2019) to get the en-
tity (stock) embedding which various relation patterns in-
cluding symmetry/anti-symmetry, inversion, and composi-
tion are preserved. We use matrix Z ∈ RN×d to represent
the stock embedding obtained by the knowledge graph em-
bedding model where d is the embedding dim and each entry
of z resemble the embedding of each stock. One can employ
various knowledge graph embedding methods to infer the
latent space. Then the structural relationship in latent space
is defined as:

Ns(i) = {j|d(zj , zi) < ρ} (4)
where the number of original knowledge graph links is:

Nkg =
∑
i

∑
j

aij (5)

In our framework, ρ is selected by increasing the number
of structural links from zero to more than Nkg , structural
neighborhood can also be written as the adjacency matrix
As ∈ RN×N.

We note that the structural edges are different from the
original edges: while the latter were actually observed in the
market record, the former were “inferred” to denote “hid-
den relationships”. Those “hidden relationships” may never
actually happen, are not observable, or are never recorded;
however, they represent the extra “latent correlations” be-
tween nodes as drawn from data, beyond those already on
the record. Those inferred hidden relationships potentially
abstract the deeper, even non-quantifiable economic market
confounding factors, and greatly complement the observed
graph.



Figure 2: The middle figure illustrates the AR-Stock framework on the stock knowledge graph. The left figure stand for the Geometric
Augmentation Module. The structural links are selected based on the pairwise distance of their knowledge graph embeddings. The right
figure is our Self-Supervision Module. We adopt Graph Partition and Graph Completion to facilitate training. The normal loss and the self-
supervised loss share the same sequential extractor and feature extractor with their individual linear transformation parameters.

Aggregation Scheme Next, we present the aggregation
scheme to incorporate the structural adjacency matrix with
GCN. The structural link can be regarded as a new kind of
link. Therefore, we define a new adjacency matrix through
concatenating the original knowledge graph adjacency ma-
trix A with the structural adjacency matrix As as follows:

ATotal = Concat[A,As] (6)
where ATotal ∈ RN×N×(K+1). Then we compute the re-
lation weight in graph convolution layer based on the new
adjacency matrix:

g
(
aTotalji , eti, e

t
j

)
= φ

(
wT
[
et

T

i , e
tT

j , a
TotalT

ji

]T
+ b

)
(7)

where w ∈ R2U+(K+1).

Self-Supervision for Globel/Local Dependency
Awareness
Furthermore, we introduce two kinds of self-supervised
methods into AR-Stock via multi-task learning, which is
shown to be a promising way in the visual domain to fa-
cilitate our model training. We incorporate self-supervised
learning into stock prediction via multi-task learning in the
following ways:

` = `stock + β × `self (8)
where `stock is the loss related to stock prediction, `self is
the self-supervised learning loss and β is the trade-off hyper-
parameter.
Graph Partition Companies with similar relationships
are more likely to have the same stock price trends. Inspired
by this, we propose the first self-supervised task, graph par-
tition, parting the graph into M parts where M is a hyper-
parameter to be tuned, where the partition labels are used
as self-supervised labels. Here METIS (Karypis and Kumar
1998) is used to perform graph partition.

However, the knowledge graph cannot be directly applied
partitioned since there are multiple relation types existing

such that there may exist multiple links between stocks.
Moreover, the knowledge graph is a directed graph. To over-
come so, we present approximation strategies below.

First, we treat every directed edge as an undirected link to
eliminate the direction issue. Then, different types of edges
are unified as the same type when partition, which is merged
between stocks into an edge with a weight m where m is
the number of links between the two stocks. Next, all m
edges between two stocks are merged to form an edge with
a weight m. With the approximation, we can use graph par-
tition to get the subgraph to which each stock belongs to.
These can be regarded as the node labels for which subgraph
they belong to, and then fed into the regularization. Here we
use the cross entropy loss as the regularization.

`part = −
∑
i

yti log(p
t) (9)

where y is the stock partition label and p can be obtained as
follows:

pt = softmax(etpart) (10)
etpart = MLP(eti) (11)

where the embeddings after the graph convolution layer are
feed into an neural network and softmax layer. The upper
right of fig 2 depicts our Graph Partition method.
Graph Completion The stock prices of companies linked
to each other are more likely to be affected by the other.
To enforce this constraint, we propose the second self-
supervised method called graph completion. Motivated by
image inpainting a.k.a. completion (Yu et al. 2018) in com-
puter vision (which aims to fill missing pixels of an image),
we propose graph completion, a novel regression task, as a
self-supervised task. As an analogy to image completion and
illustrated in Figure1 1, our graph completion first masks tar-
get nodes by removing their features. It then aims at recover-
ing/predicting masked node features by feeding to GCNs un-
masked node features (currently restricted to second-order
neighbors of each target node for 2-layer GCNs).



Table 1: Statistics of the sequential and relation data.
Datasets Stocks Train\Valid\Test Relation Types Relation Ratio

NASDAQ 1026 756\252\237 42 0.21%
NYSE 1737 756\252\237 130 9.37%

We design such a self-supervised task for the following
reasons: 1) the completion labels are free to get, which is
the node feature itself; and 2) we consider graph completion
can aid the network for better feature representation, which
teaches the network to extract feature from the context.

We next show how to implement our method. We first cre-
ate an adjacency matrix called Aself same as the original
adjacency matrix except that it doesn’t contain self-loops.
Then we input Aself to another GCN model to get the em-
beddings that are not affected by the self-loop. Then we get
the regression loss as follows:

`regre = ||etregre − f t||2 (12)
where f t is the input feature at time t and etregre is the em-
bedding obtained through the graph convolution network
with Aself . Fig 2 lower right depicts our Graph Completion.

Prediction Layer
Lastly, we feed the sequential embeddings and revised rela-
tional embeddings to a fully connected layer to predict the
ranking score of each stock; the ranked list of stocks rec-
ommended to buy is then generated based on the predic-
tion scores. To optimize the model, we propose an objective
function that combines both pointwise regression loss and
pairwise ranking-aware loss:

`stock

(
r̂
t+1

, r
t+1
)

=
∥∥∥r̂t+1 − rt+1

∥∥∥2
+ α

N∑
i=0

N∑
j=0

max
(
0,−

(
r̂
t+1
i − r̂t+1

j

)(
r
t+1
i − rt+1

j

))
(13)

where rt+1 = [rt+1
1 , ..., rt+1

N ] and r̂t+1 =[
r̂t+1
1 , · · · , r̂t+1

N

]
∈ RN are ground-truth and predicted

ranking scores, respectively, and α is a hyper-parameter to
balance the two loss terms. Since we focus on identifying
the most profitable stock to trade, we use the 1-day return
ratio of a stock as the ground-truth rather than the normal-
ized price used in previous work. The first regression term
punishes the difference between the scores of ground-truth
and prediction. The second term is pair-wise max-margin
loss (Zheng et al. 2007), which encourages the predicted
ranking scores of a stock pair to have the same relative order
as the ground-truth.

For our method with self-supervised regularization, the
loss function will be changed as follows:

` = `stock
(
r̂t+1, rt+1

)
+ β × `self (14)

where β is the trade-off hyper-parameter and `self is the two
kinds of self-supervised learning loss.

EXPERIMENTS
To justify the effectiveness of AR-Stock, we conduct exten-
sive experiments to answer the following research questions:
• RQ1: How does AR-Stock perform compared with state-

of-the-art stock prediction methods?
• RQ2: How different components (e.g., self-supervision,

geometric augmentation, trade-off parameter) affect the
results of AR-Stock?

• RQ3: What is the effect of our self-supervision methods
on stocks with limited data?

• RQ4: Why does geometric augmentation work and what
affects the performance of it?

Datasets
To evaluate the effectiveness of AR-Stock, we conducted
experiments on two benchmark datasets from (Feng et al.
2019) that incorporate stock relations from NASDAQ and
NYSE markets. The two datasets have transaction records
between 01/02/2013 and 12/08/2017. Following (Feng et al.
2019), we chronologically separate the stock price data
into three time periods for training (2013-2015), validation
(2016), and evaluation (2017), respectively. The statistics
about the sequential and relational data are summarized in
Table 1.

Experimental Setup
We adopt a daily buy-hold-sell trading strategy to evaluate
the performance of stock prediction methods regarding the
revenue. Since the target is to accurately predict the return
ratio of stocks and appropriately rank the relative order of
stocks, we employ three metrics, Mean Square Error (MSE),
Mean Reciprocal Rank (MRR), and the cumulative invest-
ment return ratio (IRR), to report model performance. Since
directly reflecting the effect of stock investment, IRR is our
main metric, which is calculated by summing over the return
ratios of the selected stock on each testing day.

To demonstrate the effectiveness of AR-Stock, we com-
pare our proposed AR-Stock with three state-of-the-art
methods: SFM (Zhang, Aggarwal, and Qi 2017), LSTM
(Bao, Yue, and Rao 2017), TGCN (Feng et al. 2019). To
explore various design options for AR-Stock, we design
two variants of AR-Stock with two different self-supervised
learning methods. The Part represents our AR-Stock with
the self-supervised method of graph partitioning. The Comp
represents our AR-Stock with the self-supervised method of
graph completion.

We implement our AR-Stock model in Tensorflow. We
set the dimensions of embedding vectors of TGCN and
AR-Stock models 64 by default. For TGCN and AR-Stock
model, we utilize one layer of embedding propagation net-
work to obtain the best results. For our method, we test
the values of [1e-2, 1e-3, 1e-4, 1e-5, 1e-6] for the self-
supervised trade-off parameter, finding a value of 1e-5 leads
to the best result on both datasets. We determine ρ by in-
creasing ρ from zero to more than Nkg . Moreover, the same
with (Feng et al. 2019), we also pre-train the LSTM layer
to obtain the sequential embedding. The number of training
epochs is set to 50. The learning rate is fixed to 1e-3 and then
Adam (Kingma and Ba 2014) is adopted as the optimizer.
Besides, as the stock markets are rather sensitive, we repeat
the testing procedure five times and report the average per-
formance and corresponding standard deviation to eliminate
the fluctuations.

Comparison with State-of-the-arts (RQ1)
We first compare the performance of AR-Stock with exist-
ing methods. Table 2 shows the two variants of AR-Stock
and the performance comparison w.r.t. MSE, MRR, and IRR



Table 2: Experimental results of different methods over the NASDAQ and the NYSE datasets. Comp and Part in the table represent graph
completion and graph partition methods of self-supervised learning, respectively.

NASDAQ NYSE

MSE MRR IRR MSE MRR IRR

SFM 5.20e-4±5.77e-5 2.33e-2±1.07e-2 -0.25±0.52 3.81e-4±9.30e-5 3.82e-2±4.95e-3 0.49±0.47
LSTM 3.81e-4±2.20e-6 3.64e-2±1.04e-2 0.13±0.62 2.31e-4±1.43e-6 2.75e-2±1.09e-2 -0.90±0.73
TGCN 3.79e-4±3.58e-7 3.34e-2±3.19e-3 1.49±0.31 2.27e-4±1.24e-6 4.10e-2±2.65e-3 1.87±0.22

AR-Stock-Part 3.78e-4±4.18e-7 3.99e-2±4.32e-3 2.00±0.33 2.26e-4±5.14e-7 5.13e-2±3.00e-3 2.44±0.16
AR-Stock-Comp 3.78-4±4.50e-7 4.27e-2±3.30e-3 2.47±0.35 2.25e-4±4.40e-7 4.31e-2±4.98e-3 2.02±0.14

Table 3: Performance of geometric augmentation.
TGCN TGCN+Geom

MSE 3.79e-4±3.58e-7 3.78e-4±5.61e-7
NASDAQ MRR 3.34e-2±3.19e-3 4.01e-2±3.16e-3

IRR 1.49±0.31 1.77±0.27
MSE 2.27e-4±1.24e-6 2.25e-4±2.34e-7

NYSE MRR 4.10e-2±2.65e-3 4.47e-2±2.38e-3
IRR 1.87±0.22 2.11±0.28

Table 4: Performance of different self-supervision methods

TGCN TGCN+Part TGCN+Comp

MSE 3.79e-4±3.58e-7 3.78e-4±5.00e-7 3.78e-4±5.48e-7

NASDAQ MRR 3.34e-2±3.19e-3 3.74e-2±2.22e-3 3.59e-2±3.13e-3

IRR 1.49±0.31 1.60±0.14 1.67±0.18

MSE 2.27e-4±1.24e-6 2.26e-4±6.73e-7 2.26e-4±1.29e-6

NYSE MRR 4.10e-2±2.65e-3 4.07e-2±1.62e-3 4.23e-2±2.70e-3
IRR 1.87±0.22 2.01±0.23 1.89±0.23

among the baseline methods on the NASDAQ, and NYSE
datasets. We can find that AR-Stock with graph partition per-
forms the best in general and AR-Stock with graph comple-
tion performs better than graph partition w.r.t some metrics
of the two datasets. From the results in the table, we gain the
following observations:
• In general, our model yields the best performance

on all the datasets in terms of all three metrics. The
best performing method is highlighted. In particular, our
method improves over the strongest baselines w.r.t. in-
vestment return ratio by 65.77%, and 30.48% in NAS-
DAQ, and NYSE dataset, respectively. By utilizing self-
supervised learning and geometric augmentation, our
method is capable of exploring the structural information
explicitly, to benefit graph neural network effectively. We
can find nearly each of our methods outperforms the orig-
inal method. This verifies the significance of introducing
self-supervised learning and geometric augmentation.

• Our method with partition achieves better result on NAS-
DAQ dataset. This is because the relations of the NAS-
DAQ dataset is more sparse, so it is difficult to do graph
partition, while the Comp method is not affected by this.
The relations on the NYSE dataset is much more dense,
so Comp method achieves better results on NYSE dataset.

• Our method has a relatively small improvement over
MSE, which is consistent with the finding in TGCN.
Compared with the previous method, it is difficult to
achieve a large improvement over MSE in these two
datasets. Our method has achieved a substantial improve-
ment over MRR and IRR, which indicates that our method

ranks the stocks with great potential returns in a relatively
high position.

• We find the TGCN method based on graph neural network
significantly outperforms the traditional method such as
LSTM and SFM as they do not consider the complex rela-
tionship between stocks. It again verifies the importance
to model the stock relations as a knowledge graph.

Ablation Study (RQ2)
As the self-supervision and geometric augmentation play a
pivotal role in AR-Stock, we investigate their impact on the
performance. We first consider our method with only geo-
metric augmentation, the ablation on the contribution of our
method is in table 3. The settings of hyper-parameter are
the same as before. We can have the following finding that
the geometric augmentation method outperforms the basic
graph neural network method. This verifies the usefulness
of incorporating the geometric augmentation.

The ablation on the contribution of the two self-
supervised learning methods in table 4. We can see the
two self-supervised learning methods outperform the orig-
inal GCN in most cases. Also we can see only using self-
supervised learning decreases the performance a lot, this
again verifies the importance of adding more links that can
reflect the structural information.

Furthermore, we show how do these hyper-parameters in-
troduced in our AR-Stock impact the performance and also
shed light on how to set them. Due to space limitation, for
the following experiments, we show the results on the NAS-
DAQ dataset only, and the results on the NYSE dataset show
the same trend. We mainly study the influence of the tradeoff
parameter used in the two self-supervised learning methods.
The results are summarized in table 5. We can find that the
best results are obtained when the coefficient is set to 1e-
5. When the coefficient is set to 1e-6, our method decreases
w.r.t the three metrics compared with the best results because
it is insufficient to learn the self-supervision information,
while when the coefficient is increased to 1e-6, our meth-
ods decreases greatly in all indexes, which indicates that too
strong self-supervision regularization will negatively affect
model normal training and is not encouraged. To conclude,
this suggests that our approach is primarily complementary
to the GCN. Also we find that graph partition performs bet-
ter than graph completion. This again verifies our idea of
using structure information.

Self-supervision with Limited Data (RQ3)
The data sparsity issue usually limits the expressiveness of
machine learning systems, since few data of inactive stocks



Table 5: Comparison of two self-supervised learning methods with different coefficients in terms of stock prediction on NASDAQ dataset.

TGCN+Part TGCN+Comp

Coefficient MSE MRR IRR MSE MRR IRR

1e-4 3.79e-4±5.66e-7 3.45e-2±4.15e-3 1.50±0.29 3.84e-4±1.08e-6 3.02e-2±3.13e-3 1.66±0.44
1e-5 3.78e-4±5.00e-7 3.74e-2±2.22e-3 1.60±0.14 3.78e-4±5.48e-7 3.59e-2±3.13e-3 1.67±0.18
1e-6 3.79e-4±4.97e-7 3.71e-2±2.22e-3 1.55±0.11 3.80e-4±3.67e-7 3.57e-2±5.04e-3 1.51±0.36

Table 6: Experiments with different amount of training data on
NASDAQ.

TGCN TGCN+Part TGCN+Comp

1.00 3.79e-4±3.58e-7 3.78e-4±5.00e-7 3.78e-4±5.48e-7

0.10 3.89e-4±3.23e-6 3.81e-4±7.89e-7 3.82e-4±1.02e-6

0.05 4.86e-4±4.55e-5 4.12e-4±3.78e-5 4.05e-4±1.89e-5
0.01 3.15e-3±9.12e-5 2.24e-3±4.12e-5 2.00e-3±2.43e-5

Table 7: Experiments with different mask ratios on NASDAQ.

10% 30% 50% 70% 90%

MRR 0.954 0.917 0.859 0.755 0.615

HR@1 0.925 0.870 0.791 0.673 0.536

HR@10 0.990 0.981 0.958 0.897 0.763

are insufficient to generate high-quality representations. We
investigate whether exploiting self-supervision information
helps to alleviate this issue.

Towards this end, we perform experiments over different
amounts of training data. In particular, we keep a certain ra-
tio of the latest data of each stock. In the experiments, the
ratios per stock are 1.00, 0.10, 0.05, 0.01 respectively where
1.00 represents the original dataset. Table 6 illustrates the re-
sults w.r.t. MSE on different sizes of data in NASDAQ; we
see a similar trend for performance w.r.t. MRR and IRR and
omit the part due to the space limitation. We find that our
proposed two self-supervision methods consistently outper-
form TGCN even with a very limited amount of data. It can
also be found that the fewer data we have, the more signif-
icant improvements we can obtain. This verifies the effec-
tiveness of our self-supervision strategies.

Effect of Geometric Augmentation (RQ4)
We would like to investigate if the long-range dependen-
cies are rich and stable enough to be captured from indus-
try and supplier relationships. Towards this end, we perform
experiments over knowledge graphs with different ratios of
masked edges using our method in Section . In particular, we
randomly mask 10%, 30%, 50%, 70%, 90% of edges in the
original knowledge graph respectively, and discover whether
our approach can well recover them. Table 7 illustrates the
results w.r.t. MRR, HR@1 (Hit ratio), and HR@10 on dif-
ferent mask ratios of the knowledge graph in the NASDAQ
dataset. We have the finding that known relationships are
significantly more likely to be learned in the stock knowl-
edge graph even with only 10% of remaining edges. There-
fore, by performing the proposed method on the complete
stock knowledge graph, potential long-range relationships
can be well detected and GCNs training can be facilitated.

Table 8: Experiments of geometric augmentation with different
number of geometric links in terms of stock prediction on NAS-
DAQ dataset. The ratio is the proportion of geometric links to the
links in the original dataset.

TGCN+Geom

Ratio of Links MSE MRR IRR

30% 3.79e-4±3.87e-7 3.65e-2±4.01e-3 1.62±0.52
60% 3.79e-4±3.61e-7 3.96e-2±3.18e-3 1.64±0.46
90% 3.78e-4±5.61e-7 4.01e-2±3.16e-3 1.77±0.27
120% 3.79e-4±6.42e-7 3.90e-2±6.21e-3 1.54±0.51

To further explore the role of geometric augmentation, we
next show the influence of the different numbers of geomet-
ric links. We fix all other hyper-parameters and only adjust
the number of long-range links added. We find that the best
result is obtained when the geometric links close to the num-
ber of links in the original dataset were added. This can be
explained as adding too many links will mix irrelevant in-
formation, and adding too few edges will lead to insufficient
use of structural information. As shown by Table 8, we find
adding 90% links yields the best result, and adding more or
fewer links will decrease the performance.

Conclusions
In this paper, we propose AR-Stock via the incorporation of
geometric augmentation and self-supervision to assist GCN
training for stock trend prediction. Experiments on the NAS-
DAQ and NYSE datasets showed AR-Stock significantly
outperforms state-of-the-art methods, which indicates the
ability of our model to capture the long-range dependency
relationships between corporations to make accurate predic-
tions on the stock market. Our model is model-agnostic and
has broader applications on knowledge graph-based learning
problems, which will be explored in the future.
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