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Abstract

A significant challenge in credit risk models for underwrit-
ing is data representativeness. When credit scoring models
are built using only applicants who have been accepted for
credit which is the common strategy in the industry, such non-
random sampling mainly influenced by credit policy mak-
ers and previous loan performances may introduce sampling
bias to the estimated credit models and accordingly influ-
ence the models’ prediction of default on loan payment when
screening applications from all borrowers. In this paper, we
proposed two data augmentation methods that aim to iden-
tify and pseudo-label parts of the declined loan applications
based on the confidence level of the estimated labels to mit-
igate sampling bias in the training data. Besides prevalent
model performance metrics, we also reported loan applica-
tion approval rates at various loan default rate intervals from
the business perspective. Our proposed methods were com-
pared to the original supervised model and the traditional re-
ject inference method using fuzzy augmentation. The results
showed that self-training model with calibrated probability as
data augmentation selection criteria improved the ability of
credit score to differentiate good/bad loan applications and,
more importantly, increased loan approval rate by 2.6% while
keeping similar default rate comparing to the KGB model.
The results demonstrate practical implications on how future
underwriting model development process should follow.

1 Introduction
Credit scoring models are tools that financial institutions de-
sign to guide lending decisions for businesses or individu-
als. The model predicts the probability of default, i.e., appli-
cants’ probability of not repaying their debts, from collected
financial information during the application stage. It is a bi-
nary classification model that separate bad borrowers from
good ones. Traditional credit scoring models are trained with
only a part of loan applicants that are approved by insti-
tutes, since repayment performances only exist for funded
loans. Accepted applicants are already screened by the risk
scoring models and manual checks during the underwriting
process. In comparison, the entire application population in-
cludes rejected applicants whose actual repayments are un-
known and potential applicants who never apply. Therefore,
from the perspective of data sampling, the training samples
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from accepted applicants are biased from the through-the-
door population at the time of credit underwriting. Though
it is hard to consider potential applicants since no financial
information provided, this paper proposes approaches to ad-
dress the sampling bias issue by inferring rejected applicants
and augmenting representitiveness of training samples. This
technique in lending domain is referred as reject inference
(Siddiqi 2003; Montrichard 2007).

Reject inference (RI) are techniques that combine ac-
cepted applicants with their repayment and rejected appli-
cants with estimated performance into inferred data sets and
generate reject inference scoring models. Previous studies
have introduced different strategies to estimate the rejected
applications. One common practice is to obtain external
loan performance data from credit bureaus for rejected ap-
plicants, though it is relatively costly. Another well-known
strategy, fuzzy augmentation, assigns labels to the rejects
based on the scoring model trained by accepted applicants
with adjustment made on sample weights, and then retrains
the scoring model (Montrichard 2007). Recent model-based
techniques have proposed new models to assign labels to the
rejects from the angle of semi-supervised learning, such as
semi-supervised SVMs, self-learning, and K-prototype clus-
tering (Li et al. 2017, 2020; Kozodoi et al. 2019). However,
some methods like clustering only have good performances
on low dimensional data according to theoretical findings
(Bellman 2015). Moreover, datasets used in these experi-
ments are usually oversimplified in low dimension and rela-
tively small in size as well (Li et al. 2017, 2020).

The contribution of this paper is two-fold. First, we pro-
pose two novel reject inference techniques to estimate the
performance of applicants whose actual default statuses are
unknown. One method includes a self-training method with
variation on the choice of most confident of unlabeled pre-
dictions that are added to the training set. We introduce prob-
ability calibration and Trust Score as confidence models to
select the most confident predictions (Triguero, Garcı́a, and
Herrera 2015; Jiang et al. 2018; Niculescu-Mizil and Caru-
ana 2005). Another method uses the idea of data program-
ming, and initializes multiple weak classifiers to jointly label
the data along with Snorkel generative models (Ratner et al.
2017). Second, we introduce a new business-related mea-
sure (denoted as approval rate) to evaluate the performance
of reject inference methods. By controlling potential default



Figure 1: Flowchart of self-training method with confidence
model for reject inference.

rate, estimated approval rate measures the percentage of ap-
plicants that can be approved as an estimated business Key
Performance Indicator (KPI). This measure considers both
accepted label accuracy and also the application population.
It provides us a unique metric for domain-specific evalua-
tion.

2 Methods
In this section, we present two reject inference methods.
Self-training method combines a self-training algorithm and
a pseudo-label confidence model. And we introduce another
method using multiple weak classifiers and Snorkel (Ratner
et al. 2017) to predict the default status of loan applications
whose performances are unlabeled.

Consider a set of n loan applications x1, x2, · · · , xn ∈
Rk where k is the number of features. This set includes
m accepted applications x1, x2, · · · , xm ∈ Xa with cor-
responding labels y1, y2, · · · , ym ∈ {Good, Bad} and con-
sists of xm+1, · · · , xn ∈ Xu whose labels are unknown.
The credit scoring model trained with Xa only is denoted
as Known Good/Bad (KGB) model. To mitigate sampling
bias, reject inference techniques assign labels to unlabeled
applications, and combine accepted data and pseudo-labeled
data into inferred data sets to represent the whole application
population and update credit scoring models. The scoring
model with inferred data as training set is denoted as reject
inference model (RI model).

2.1 Self-training with confidence model
Figure 1 is an overview of our proposed self-training method
pipeline. It starts with training an initial model (also the
KGB model in the first iteration) on the accepted data Xa

and uses it to predict all the unlabeled data. Then, a confi-
dence model is introduced to filter the most confident predic-
tions whose labels are either good or bad in unlabeled data
Xu with a fine-tuned threshold. The selected unlabeled data
are labeled in accordance with the predictions, and the train-
ing set is augmented with new labeled data, denoted as X1

a .
Then RI model is retrained with labeled data X1

a . This pro-
cess is repeated, and RI model and confidence model update

Figure 2: Flowchart of weak supervision for reject inference.

every iteration along with labeled data Xj
a. It will stop un-

til no confident applications are identified from confidence
model or reaching a pre-defined number of rounds as stop-
ping criteria.

We applied two confidence models to accommodate
the attributes of different algorithms for reject inference:
Trust Score (Jiang et al. 2018) and probability calibration
(Niculescu-Mizil and Caruana 2005). The traditional self-
training selects confident predictions whose prediction prob-
abilities p satisfy p > α or p < 1 − α, where a is a prob-
ability threshold. However, many popular algorithms, such
as Naive Bayes, SVM and Random forest, tend to yield a
characteristic sigmoid-shaped distortion in predicted proba-
bilities. Our probability calibration confidence model adds
isotonic probability calibration (Niculescu-Mizil and Caru-
ana 2005) and uses calibrated probabilities to filter confident
predictions. Trust Score model, on the other hand, provides
prediction accuracy from the nearest neighboring approach
(Jiang et al. 2018). It pre-selects a high-density data range
for each class. Then a trust score is defined as follows to
evaluate the prediction: for a predicted test label, the trust
score is the ratio between the distance from the test label
to the nearest class different from the predicted label class
and the distance to the predicted label class within the data
range. In this work, the score is based on 5% of the instances
from each class. A high score implies high prediction accu-
racy since the predicted case is close to labeled data with the
same label class.

From empirical results, probability calibration shows a
significant improvement in maximum margin methods, such
as XGBoost, the one used in our experiment. And Trust
Score works as an alternative of algorithms’ own confidence
scores from initial feature space and validation set.

2.2 Weak supervision with data programming
In recent years, data programming has been widely dis-
cussed and developed to generate labeled training sets. One
such successful example is Snorkel project (Ratner et al.
2017). Taking advantage of Snorkel flow and generative
models, we initialize rule-based weak classifiers and esti-
mate the labels of unknown data. Figure 2 is the pipeline of
our weak supervision method.



We collected common heuristic rules to detect potential
default applicants from interviews with underwriting and
credit policy experts. Furthermore, based on weight of ev-
idence of variables from KGB model, we selected features
with high information value and monotonic pattern of de-
fault rate (Wang et al. 2020). For each selected feature, we
identified a feature value threshold when the bad loan rate
climbs and labeled applications in high bad loan rate bins
as bad. For example, business tenure is a popular index to
measure the stability of applicants. We created a weak clas-
sifier that applicants whose business history is less than one
year will be labeled as bad. It is worth noting that these rules
are based on limited features of labeled accepted data and
expert experiences, and their accuracy are weak compared
to the KGB model. The accuracy and correlations of weak
classifiers are learned with Snorkel generative model. And
Snorkel reports final probabilistic labels for part of unla-
beled data that it can predict. The reject inference model is
trained with accepted data and data labeled by weak super-
vision with confidence. For the details of Snorkel system,
please check their papers and website (Snorkel 2020).

3 Experiments
3.1 Data
Our research was carried out using loan data from Intuit
lending business which has offered business loans to its
small business accounting software users since 2017. These
loans are repaid weekly, bi-weekly or monthly over a period
of six, nine, or twelve months.

Between 2017 and 2020, hundreds of thousands of loan
applications have been submitted, and tens of thousands of
loans have been issued. Over a quarter of issued loans have
reached maturity. Those issued loans still in the process of
repayment and those we declined previously, representing
vast majority of all loan application population, are not in-
cluded in the credit risk models due to lack of loan perfor-
mance history. A number of features are derived correspond-
ing to account balance patterns, cash flow trends, composi-
tion of recurring liabilities, seasonality and other spending
patterns, frequency of negative financial events such as over-
drafts and late payments, et cetera.

For this research, Intuit provided us a random and anony-
mous sample of loan applications with a size of around
20,000 to ensure the repsentativeness of the population.

We will not discuss here hundreds of features that are ex-
tracted from bank transactions and how users’ bureau data
was processed through our internal data pipeline, apart for
noting that this kind of data is intrinsically noisy. Some of
the noises are introduced by information representation and
transmission of bank data, inaccurate recording of business
bureau data, and significant variability due to the differences
in the nature of business among loan applicants.

After feature engineering, the entire dataset was split into
a training set and a test set according to the loan applica-
tion date. For a better evaluation on more representative test
applications, we augmented the labeled test data by assign-
ing labels to part of rejected applications with external loan
history from bureaus as ground truth. So in the test set, the

Table 1: Data matching between Bureau and Intuit*

Good Bad
Good 91% ∼ 0%
Bad 3% 6%

*Bureau data are shown in rows and Intuit data are shown in
columns. Percentages are shown in as % of total number of loans
with known outcomes.

labeled subset is a combination of internal loans with their
performances and rejected applications with estimated la-
bels from their bureau credit history. We set stringent match-
ing criteria in order to maximally eliminate false positive
matches, such as requiring a relatively narrow matching
window, matching credit accounts whose types and days
past due are similar to our loan population only. Eventually,
about 13% of data in the test set are labeled by the bureau
credit account data.

To further validate the quality of data matching between
bureau credit accounts and loan data, we calculated the con-
fusion matrix between bureau data and existing labeled loan
data. Results show that the matching quality is satisfactory
as shown in Table 1 - about 97% of the data were matched
correctly.

3.2 Loan Outcomes
The outcome of a credit decision is not fully known until the
loan has matured and either the full amount due is repaid in
the expected time or what is repaid is a partial amount and/or
over a much longer period of time. We define a loan to be in
good standing (labeled as Good) when timely payments are
being made, or payments are less than 60 days past due. Us-
ing this definition for our discussion, we will simplify loan
outcomes as follows:
• Good Outcome – loans are all those loans still in good

standing which will mature in 30 days plus all those loans
already repaid in full.

• Bad Outcome – loans are all the rest – the ones that are
delinquent (60+ days past due) plus the loans not fully
repaid (write-offs due to charge off).

• Unknown Outcome – loans are those in good standing
which will mature in more than 30 days, approved but not
taken by applicants or declined due to applicants’ credit-
worthiness.

3.3 Choice of credit risk model
Our previous work (Wang et al. 2020) found that gradi-
ent boosted tree algorithm (XGBoost) provided the best
model performance among several candidate algorithms
for credit risk scoring, and simultaneously monotonic con-
straints (DMLC/xgboost 2016) on inputs can provide expla-
nations on the predicted score in conjunction with Shapley
values (Lundberg and Lee 2017). Best hyperparameters used
in XGBoost is determined by Amazon Sagemaker XGBoost
hyperparameter tunning using Bayesian search (Amazon-
Sagemaker 2020). For comparison purposes, we will select



XGBoost as the choice of credit risk models for all the meth-
ods throughout the experiment.

3.4 Benchmark models
We adopted two benchmark models in this experiment: a
Known Good/Bad model that does not have any sampling
correction, and a fuzzy argumentation method as represen-
tative of current reject inference techniques. The Known
Good/bad XGBoost model is trained with only accepted and
funded applicants.

Fuzzy argumentation involves assigning labels to unla-
beled data based on the KGB model and retrain to get RI
model (Montrichard 2007). It assigns unknown data as be-
ing partial Good and partial Bad by labels and weights. Ev-
ery application in Xu is duplicated as two records with two
labels y: (1) y1 = Good with weight p(Good); and (2)
y2 = Bad with weight p(Bad). The weights p(Good) and
p(Bad) are predicted probabilities based on KGB model.
The sum of two weights is equal to 1. And accepted appli-
cations are also weighted by 1. Then the RI model is con-
structed on weighted data.

3.5 Evaluation metrics
Both the benchmarks and our new methods are tested on the
same test set to ensure a fair comparison.

AUC-ROC (AUC) and K-S are used to compare the per-
formances. Besides commonly used AUC for binary classi-
fication models, K-S is a metric between 0 and 1 that mea-
sures the maximum separation between the cumulative dis-
tribution of the two classes (Bradley 1997; Smirnov 1948;
Kolmogorov 1933). Note that both metrics do not depend
on the selection of classification thresholds, making them
attractive as evaluation metric in the context of credit risk
domain.

Approval rate Besides domain-independent evaluation
metrics, we introduce a novel evaluation metric from a busi-
ness KPI perspective, approval rate. In general, when more
applications are approved, more loans with bad outcome
will be introduced. For the maximum profit and risk con-
trol, lending institutions prefer to extend their customer pop-
ulation while keeping controllable potential loan default.
Therefore, for a given risk score threshold t(p) where p is
the pre-defined bad rate, the approval rate is calculated as

Approval rate =
number of applications with score ≤ t(p)

nubmer of applications

bad rate p =
number of loans with label Bad

number of loans with labels in {Good, Bad}
Note that calculation of approval rate is based on both la-
beled test set and the unlabeled test data. Refer to Figure 3
for an illustration of risk score distribution and how it is re-
lated to approval rate calculation. Given the test data, pre-
dicted risk score, and a specific risk score threshold, the nu-
merator of approval rate is the size of data whose risk score
is lower than the threshold. The corresponding bad rate is
the ratio of bad loans in the combined labeled loans in the
augmented data set.

Figure 3: Illustration of approval rate calculation. The
dashed line is risk score approval threshold t(p): applica-
tions with lower risk scores are approved.

To take unlabeled data into consideration, the bad rate
thresholds need to be set lower than normal business bad
loan rates that financial institutes could take. Therefore, we
report multiple approval rate estimates on different low bad
rates, including 2.5%, 3%, and 3.5% in the results.

4 Results and Discussion
4.1 Experiment results
Table 2 summarizes the performances of our reject inference
methods and benchmarks on the test set. The training size
reports the final training size applied in each method com-
pared to the original accepted data size. Fuzzy augmenta-
tion uses the full unknown data for the training, while all the
other methods selectively include part of unlabeled dataset
into their training set. The best of each metric is highlighted.
For the two benchmarks, fuzzy augmentation does not im-
prove the performance compared to KGB model on most of
the metrics. For self-training method, XGBoost algorithm
works better with calibrated probability as confidence model
than Trust Score. Self-training with probability calibration
confidence model outperforms all other methods in terms
of AUC, K-S statistics, and approval rate @2.5% bad rate.
Compared to the KGB model, the approval rate increases
from 52.9% to 54.3%, and K-S statistics improves from
0.367 to 0.381. In contrast, self-training with TrustScore
only performs better than fuzzy augmentation on the ap-
proval rates. For the second method we proposed – weak
supervision, the results are more mixed. The K-S statistics,
AUC, and approval rate at low bad rate (2.5%) of weak su-
pervision are the lowest among all methods, but approval
rates at higher bad rates (3% and 3.5%) are the highest.

Performance gain are relatively modest, consistent with
the prior literature (Hand and Henley 1993). Friedman’s
rank sum test reports that not all the methods perform the
same (p < 0.05), but pairwise comparisons do not show
significant differences between most of methods. However,



Table 2: Comparison of Performance of Reject Inference Methods and Benchmarks

Method* Training size AUC K-S Approval rate**
@ 2.5% bad rate

Approval rate
@ 3% bad rate

Approval rate
@ 3.5% bad rate

KGB 100% 0.737 0.367 0.529 0.618 0.696

FA 238% 0.738 0.365 0.510 0.603 0.684
ST - TS 126% 0.732 0.356 0.514 0.617 0.704
ST - CP 115% 0.740 0.381 0.543 0.602 0.706

WS 167% 0.727 0.346 0.471 0.624 0.714
* KGB: Known Good/Bad model; FA: Fuzzy Augmentation; ST-TS: Self-training based on Trust Score; ST-CP: Self-training based on
calibrated probability; and WS: Weak supervision.
** Approval rate: approval rate estimate based on labeled test dataset and unlabeled test set.

considering the large loan volume involved, it is still consid-
ered as a significant difference for business purposes.

4.2 Discussion
In self-training method, we observed that calibrated prob-
ability works better with XGBoost algorithm compared to
Trust Score. The prediction uncertainty estimation is cru-
cial for base learners in self-training methods. In our case,
we applied two simple uncertainty measures based on pre-
vious findings about Gradient boosting machines: Isotonic
regression tries to correct boosting models’ prediction prob-
abilities while Trust Score provides uncertainty information
about the relative positions of the data points (Jiang et al.
2018; Niculescu-Mizil and Caruana 2005). The final train-
ing set sizes among different methods in Table 2 also im-
plies the need for prediction accuracy measure and selection
for inferred training set as discussed in other literature (Li
et al. 2020). And the introduction of data that are far from
decision boundaries of classifiers may not help with classi-
fication performance. As prediction uncertainty studies de-
velop, one future work direction is to consider new uncer-
tainty estimates to improve the self-training performance for
RI models.

Weak supervision method shows mixed results compar-
ing to other methods. We observed highest approval rate at
higher bad rate. This is likely partially due to the fact that un-
labeled data are in general more risky than selected labeled
loans and weak supervision model covers much more unla-
beled data when bad rate is set higher. Most of weak classi-
fiers are devised towards precision in identifying bad appli-
cants among relatively high credit risk applicants rather than
covering all population. Therefore when the bad rates are
higher and close to the bad rates threshold business institutes
use, weak supervision is more likely to resemble the pattern
of the features/labels. In order for this method to perform
well consistently on the low bad rate scenarios, one future
work is to create more diverse labeling functions to cover,
for example, precisely identifying good cases with various
degree of coverage. The other reason we think weak super-
vision has high applicability in lending is its ability to even
“cold-start” training credit risk models without having the
access to any labels, thanks to the generative/discriminative
nature of Snorkel labelling models.

We proposed a domain-specific and business related KPI
Approval rate to evaluate reject inference models in addition
to ROC-AUC and K-S which are domain independent. Ap-
proval rate is closely related to hypothesis testing framework
- it controls type II error rate and reports the fraction un-
der the null hypothesis (in our case, loans with good label).
From the lending business perspective, it predicts the busi-
ness revenue and potential customer population it can serve
with default loss control. This measure could be extended
and apply to other financial domain such as insurance and
consumer lending which have strict and specific prediction
error limitation as domain-specific evaluation metric.

5 Conclusion and Future Work
In this paper, we have shared application of several data
augmentation methods which can help alleviating sampling
bias in credit risk models and how we should evaluate these
methods based not only on the traditional model perfor-
mance metric but also on business KPI related metric, i.e.,
application approval rate.

We had empirically shown that including data selectively
from the loan population with unknown outcome can effec-
tively improve credit risk models, in terms of their perfor-
mance on the general population. The traditional reject in-
ference method (Fuzzy Augmentation) tends to yield worse
performance across all the evaluated metrics. Varying degree
of effectiveness of the proposed methods on improving the
approval rate seems to depend on the level of sample bad
rate. This warrants further research to understand the differ-
ence in the augmentation methods and directs us to think
about combining them into a hybrid method.
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