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Abstract

In the house credit process, banks and lenders rely on a fast
and accurate estimation of a real estate price to determine the
maximum loan value. Real estate appraisal is often based on
relational data, capturing the hard facts of the property. Yet,
models benefit strongly from including image data, captur-
ing additional soft factors. The combination of the different
data types requires a multi-view learning method. Therefore,
the question arises which strengths and weaknesses differ-
ent multi-view learning strategies have. In our study, we test
multi-kernel learning, multi-view concatenation and multi-
view neural networks on real estate data and satellite im-
ages from Asheville, NC. Our results suggest that multi-view
learning increases the predictive performance up to 13% in
MAE. Multi-view neural networks perform best, however re-
sult in intransparent black-box models. For users seeking in-
terpretability, hybrid multi-view neural networks or a boost-
ing strategy are a suitable alternative.

1 Introduction
Real estate markets are an important part of many economies
and account for 3-5% of the yearly Gross Domestic Product
(GDP) in the U.S. (National Association of Home Builders
2020). While houses are often bought on credit, 70% of all
mortgages are associated with them (Stupak 2019). One es-
sential process within the market is real estate appraisal, the
estimation of the monetary value of a property or land. As
the appraised value of a property usually determines the up-
per limit of a credit a home buyer can expect to get from a
financial service provider, a timely and accurate estimation
of real estate prices is key for banks and other lenders (Liu
et al. 2018).

Traditionally, real estate appraisal was performed with
the help of hedonic pricing models introduced by Lancaster
(1966) and Rosen (1974). These models use linear regres-
sions to estimate the monetary value of a property based
on a number of constituting characteristics typically mea-
sured as numerical (e.g., size, age) or categorical (e.g., lo-
cation, condition) variables. Over the last years, several re-
searchers have extended the classical real estate appraisal
models by using Convolutional Neural Networks (CNNs),
instead of linear regressions, to incorporate image data into
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the learning process (Law, Paige, and Russell 2019). Ex-
amples include interior and exterior perspectives of houses,
as well as street-side and satellite imagery (Law, Paige,
and Russell 2019; Poursaeed, Matera, and Belongie 2018;
Bency et al. 2017; Bessinger and Jacobs 2016; Liu et al.
2018; Kucklick and Müller 2020). Published empirical re-
sults strongly suggest that adding such image data to real es-
tate appraisal models improves their predictive performance.
However, combining multiple numerical, categorical, and
visual features in one predictive model poses a number of
challenges related to the fusion of information from hetero-
geneous sources (Li, Yang, and Zhang 2018). So far, no stan-
dard network architecture has emerged to combine the struc-
tured numerical and categorical features on the one hand,
and the images on the other hand in order to compute a fi-
nal prediction. The proposed architectures range from multi-
kernel learning to multi-view neural networks, and most re-
searchers do not compare the effect of different approaches
to the predictive accuracy of their models.

Against this background, we empirically evaluate differ-
ent multi-view learning strategies for combining structured
and image data in real estate appraisal models. For our ex-
periments, we use structured data of 32,700 real estates from
Asheville, NC, and combine it with satellite images from
Bing Maps. Our experimental results show that for the given
dataset, using multi-view learning leads to an improvement
in predictive accuracy of approximately 13%. We also find
that different multi-view learning strategies vary in their ac-
curacy gains and in their interpretability. Overall, we make
three contributions in this article: First, we review different
multi-view learning strategies from the literature. Second,
we empirically test these strategies in terms of predictive ac-
curacy using a common dataset. Third, we discuss strengths
and weaknesses of the different approaches from a theoreti-
cal and empirical perspective.

2 Related Work
2.1 Real Estate Appraisal
Real estate appraisal is typically based on hedonic pricing
models. In these models, the overall appraisal value is the
weighted sum of the partial value contributions of the consti-
tuting characteristics of a real estate (Lancaster 1966; Rosen
1974). Statistically, these models are expressed in a linear



regression and typical features are related to size (e.g., num-
ber of rooms, bathrooms, bedrooms, square feet), condition
(e.g., exterior, interior quality), or amenities (e.g., air con-
dition, number of parking spaces, fireplaces) (Ligus and Pe-
ternek 2016; Limsombunchai 2004; Helbich et al. 2013; Hill
and Scholz 2018; Park and Bae 2015).

A weakness of linear regression models is that they are
bound to use structured data only, that is, variables repre-
sented in numerical or categorical form (Law, Paige, and
Russell 2019). In other words, traditional linear regression
models can only consider hard facts about a real estate. Yet,
soft facts - for example related to livability or security - also
play a considerable role in the real estate buying and evalua-
tion process (Law, Paige, and Russell 2019). In a typical real
estate leaflet, various images portrait this information and
real estate experts or buyers can easily combine hard and
soft facts to come to an overall judgment. For algorithms,
however, understanding visual information and combining it
with structured data is still a challenge in several ways. First,
data in different representations, e.g., structured attributes
and satellite images, need to be harmonized (Liu et al. 2018).
Second, for a holistic model, the different data types need to
be combined in a suitable way (Liu et al. 2018). Third, most
statistical and machine learning algorithms can only process
data in tabular format (e.g., vectors, matrices), as opposed
to image data represented in a cube form, which captures
the image height, width, and channel dimensions (rank three
tensor).

Deep neural networks, like CNNs, offer new possibili-
ties to cope with the above challenges. For example, in re-
cent work, CNNs have been used to extract features from
property images, which were then fused with structured fea-
tures and fed into a downstream regression model. Several
types of real estate images can be used in such an approach,
ranging from interior images to satellite images. Interior im-
ages, for example, potentially contain information about a
home’s luxury level and aesthetics (Poursaeed, Matera, and
Belongie 2018; Naumzik and Feuerriegel 2020), whereas
exterior images can capture the style and look of the prop-
erty (Bessinger and Jacobs 2016). In contrast, street-side and
satellite images may capture information about the neigh-
borhood and spatial relations, setting the focus apart from
the property to a local and global sphere (Law, Paige, and
Russell 2019; Bency et al. 2017; Kucklick and Müller 2020).
As prior research has applied a diverse set of strategies to
combine such visual information with standard structured
attributes, we review and compare different so-called multi-
view learning methods in the next section.

2.2 Multi-View Learning
Multi-view learning describes strategies for learning from
various distinct data sources (Sun 2013). Each source (or
view) might contain different complementary information
and even different representations of data, for example,
relational, image, text, or video data. Broadly speaking,
these multi-view learning strategies can be divided into two
groups: alignment and fusion (Li, Yang, and Zhang 2018).

Multi-view learning through alignment tries to capture the
relationships between multiple data sources. It is based on

the consensus principle and tries to minimize the disagree-
ment between different data views (Xu, Tao, and Xu 2013).
Let X1 and X2 denote different views and let f(X1;Wf )
and g(X2;Wg) be embedding functions transforming the
views into a multi-view aligned space. Multi-view learning
alignment aims to minimize the differences in the embed-
ding output between f and g. Therefore, the modeling con-
straint, which is either distance-based, similarity-based, or
correlation-based, is optimized (Li, Yang, and Zhang 2018).
In the case of total disagreement of f and g, the model error
has the upper-bound of the maximum of the individual er-
rors, maximum(error(f), error(g)). By achieving agree-
ment, each individual performance of f and g is improved.
This optimizes the overall performance of the model. Ex-
amples of multi-view alignment methods are different ver-
sions of canonical correlation analysis (CCA) (Li, Yang, and
Zhang 2018) or different co-training algorithms (Zhao et al.
2017).

Multi-view learning through fusion aims at learning a new
joint representation of multiple data sources. It is based on
the complementary principle and assumes that each view
contains separate complementary information not captured
by the other views (Xu, Tao, and Xu 2013). Exemplary tech-
niques are multi-kernel learning, multi-view concatenation,
and different types of multi-view neural networks (Li, Yang,
and Zhang 2018; Xu, Tao, and Xu 2013).

Multi-kernel learning refers to the application of different
learning algorithms to different views (see Figure 1, Strat-
egy A). Each kernel will focus on learning other aspects
of the data and their results can then be combined linearly

Figure 1: Strategy A of multi-kernel learning. Satellite im-
age © Microsoft (2019).



Figure 2: Strategy B of multi-view concatenation. Satellite
image © Microsoft (2019).

(with same or different weights), or non-linearly, or through
kernel-boosting (Xu, Tao, and Xu 2013).

An alternative idea is to simply concatenate features of the
different views to create a single-view representation of the
sources (see Figure 2, Strategy B) (Zhao et al. 2017). For a
combination of the different data sources, the data structure
needs to be harmonized before a matrix in form of the struc-
tured data (e.g., housing attributes) can be combined with a
higher n-dimensional tensor of the images (e.g., satellite im-
ages). Therefore, the CNN either performs a classification of
the image or a feature extraction by using a hidden layer of
the neural network. For the former, the probabilities of each
class can be represented in a tabular format and combined
with the relational housing attributes. For the latter, the last
fully connected layer before the (softmax) output in a neu-
ral network is often used. The gained features are stored in a
matrix and joined with the relational housing data. However,
especially when the combined view is high dimensional and
contains only few observations, this strategy can easily lead
to overfitting due to the curse of dimensionality (Xu, Tao,
and Xu 2013).

The third class of strategies tries to learn a latent subspace
of the views. Proposed methods are multi-view autoencoders
and multi-view neural networks. Multi-view autoencoders, a
self-supervised learning strategy, encode the information of
the different views in a lower-dimensional subspace and try
to rebuild it as accurately as possible by applying a decoder
on the subspace. After training, the model’s encoder part can
extract the views’ joint representation (Li, Yang, and Zhang
2018). Multi-view neural networks are similar to the autoen-

Figure 3: Strategy C of multi-view neural networks. Satellite
image © Microsoft (2019).

coder strategy, however, as they belong to supervised learn-
ing, these methods directly map the learned representation to
a classification or regression output instead of reconstruct-
ing it (Xu, Tao, and Xu 2013) (see Figure 3, Strategy C).
For fusing the different views of the multi-view neural net-
work, either concatenation, addition or maximum fusion can
be used (Li, Yang, and Zhang 2018).

Summarizing the differences between strategies A, B, and
C, multi-view kernel learning focuses on an intelligent com-
bination of algorithms and their predictions. Strategy B, the
concatenation of views, is more data-focused. The overall
goal is to concatenate features from different views before
learning a predictive model. If the views have different rep-
resentations, some of them have to be pre-processed (e.g.,
by using a CNN to extract features from images) before
they can be joined. In strategy C, a multi-view neural net-
work tries to learn a latent joint representation from multiple
views at once.

2.3 Multi-View Learning in Real Estate Appraisal
In previous research on real estate appraisal, multi-view con-
catenation and multi-view neural networks were used (Liu
et al. 2018; Law, Paige, and Russell 2019; Bency et al.
2017).

In most cases where the authors have used multi-view
concatenation, a non-linear machine learning algorithm
(e.g., Random Forest, Support Vector Machine) was used to
combine structured features and image features (Bency et al.
2017; Poursaeed, Matera, and Belongie 2018; Bessinger
and Jacobs 2016). However, to extract the image features,



authors have followed different approaches. For example,
Bessinger and Jacobs (2016) used a CNN pre-trained on the
places-365 data set predicting class probabilities represent-
ing the information extracted from the image. These addi-
tional features are used in combination to the classical hous-
ing attributes. Similarly, Poursaeed, Matera, and Belongie
(2018) trained a CNN to classify interior images into differ-
ent luxury levels, which are used as additional features for
the relational data. Bency et al. (2017) followed a different
strategy and did not use a model trained on a different data
set for feature extraction, but trained their satellite-image
based CNN on a binary intermediary target from the same
data set, distinguishing the top and bottom 10% of the prices.
Instead of using the two classes as additional variables, they
used the CNN’s second last layer as a feature extractor for
their downstream model.

The approach of Naumzik and Feuerriegel (2020) differs
substantially from the other approaches of multi-view con-
catenation. To extract features from the images, the authors
used the error term of the linear regression on the struc-
tured house features as an intermediary target for training
the CNN. The final house price was then estimated based on
another linear regression using the structured features and
prediction from the CNN as inputs. This approach has some
similarities to boosting, where one algorithm is trained on
the other’s error term to improve the overall performance.
But instead of using just a single data source (as in boost-
ing), each learner is trained on a different view. The strength
of this model is its interpretability: The authors conclude
that each standard deviation change in the interior image re-
sults in a price increase of 13.28% (Naumzik and Feuerriegel
2020).

Contrary to the multi-step strategies of multi-view ker-
nel learning and multi-view concatenation, multi-view neu-
ral networks are a custom type of neural network that can
handle multiple data input streams within one model (see
Figure 3). For each input stream, a particular branch adapted
to the data type exists, e.g., a CNN for image data or an
LSTM for textual data (Li, Yang, and Zhang 2018). Without
intermediary steps like other target variables or the weight-
ing of predictions, the model directly fits the multiple inputs
to the target variable. Different architectures can be used,
ranging from fully non-linear structures to semi-transparent
designs (Law, Paige, and Russell 2019). The former can in-
clude multiple non-linear transformations in each of the neu-
ral network branches and additional non-linear layers after
their fusion. Often, these types of architectures are used to
maximize the predictive performance (Law, Paige, and Rus-
sell 2019). Nevertheless, these algorithms are not inherently
interpretable, meaning that the effect of one input variable
cannot be measured as for instance in a linear regression
model. Driven by the design that predictions are combina-
tions of multiple combinations of the input features, neu-
ral networks are typically categorized as black-box models,
while semi-transparent architectures combine performance
and interpretability. Hence, Law, Paige, and Russell sug-
gested a design without fully connected layers in the struc-
tured branch and after the concatenation. Additionally, the
information of the image branch is compressed to a scalar.

The resulting model could be described as a linear regres-
sion of the relational attributes and a new artificially created
variable capturing the information of the image branch. An-
other option to increase transparency is the use of post-hoc
interpretability methods, which can for example highlight
important regions in the image (Kucklick and Müller 2020).

After the technical description of the different strategies,
we compare their benefits and disadvantages in detail. Com-
bining views (see Figure 2) is more favored in the related lit-
erature than the weighting of the different kernels. Strengths
in the multi-kernel and multi-view concatenation approach
lie in the low complexity of the training process. As the dif-
ferent data types are split over multiple models, which can
be trained sequentially, only one algorithm at a time needs to
be optimized. Besides lower resource requirements, it is re-
ported that convergence is easier to reach compared to multi-
view neural networks (Bency et al. 2017). This should re-
sult in a more stable learning process and consequently in
a higher accuracy. Nevertheless, challenges for multi-view
concatenation arise in choosing the intermediate target vari-
able (Law, Paige, and Russell 2019). A suitable target needs
to be selected so that the model can learn additional, comple-
mentary insights, for example, neighborhood types or luxury
levels. In addition, labeled data is required but not always
accessible. Thus, data preparation costs might be high when
a supervised multi-view concatenation strategy is applied.
For example, Poursaeed, Matera, and Belongie (2018) la-
beled their own data set for measuring the luxury level. An-
other strategy might be the usage of a suitable pre-trained
model, using extracted high-level image features, or train-
ing on residuals. The former strategy is promising when the
image type is similar to the pre-trained model, e.g., exte-
rior images and a place classifier. An alternative for using a
pre-trained model or feature extracting, is training on resid-
uals as it forces the image model to minimize the existing
residuals of the housing attributes. In comparison, multi-
view neural networks have the advantage that no interme-
diary target variable is required. Moreover, non-linear re-
lationships of features and interactions between them can
be modeled automatically (Law, Paige, and Russell 2019).
However, downsides of multi-input neural networks are that
their convergence is hard to achieve, and their black-box
nature. To increase transparency and interpretability, Law,
Paige, and Russell suggested a hybrid architecture in which
the authors leave out some non-linear layers. This approach
is very similar to the suggested strategy of Naumzik and
Feuerriegel (2020), because both procedures focus on the
interpretability. For both models, coefficients or even stan-
dard deviations, and significance levels can be extracted for
a statistical interpretation of the results. Differences are that
the hybrid model is a one-stage approach and thus does not
require an intermediary target, while the boosting strategy
of Naumzik and Feuerriegel is explicitly trained on the error
term. In the next chapter, we compare the introduced strate-
gies of multi-kernel learning, multi-view concatenation and
multi-input neural networks on a shared dataset.



Variable Mean Standard Deviation Minimum Maximum
Square Feet 3,061.81 1,303.81 1,022.00 7,352.00
Year Built 1976 27.41 1790 2015
Full Bathrooms 1.96 0.76 1.00 7.00
Half Bathrooms 0.35 0.51 0.00 3.00
Bedrooms 3.02 0.69 1.00 7.00
Acres 0.76 0.76 0.06 4.88
Totalmarketvalue 275,049.91 149,586.08 18,300.00 2,304,500.00

Table 1: Descriptive statistic of the numerical variables. The target variable is totalmarketvalue

3 Dataset and Modelling
We used open data from 32,700 real estates in Asheville, NC
for our experiments (City of Asheville 2018). We combined
different tables from the computer-assisted mass appraisal
system, including details of the house and the lot. We fo-
cused on predicting prices for single-family homes, exclud-
ing condos and apartments, as they are difficult to separate
from each other on satellite images. The dataset includes
information about the size (number of rooms, bathrooms,
lot size), year built, condition, quality, style (house type,
roof style), and amenities (fireplace, indoor pool, garage
spaces, air condition & heating details) as well as the lo-
cation. We include location fixed effects based on the city
dummy variables in all models. The descriptive statistics are
summarized in Table 1. The target variable is the totalmar-
ketvalue and houses in the dataset have a mean value of ap-
proximately 275,000 USD. The property’s address was used
for obtaining the geographical coordinates via Bing Maps
(Microsoft Inc. 2018). In a second step, for each real es-
tate we downloaded satellite images based on the property’s
geographical location. We decided to select a zoom level
that allows to capture spatial features like parks and shops
within walking distance (400-800m) to the real estate, as
these features are known to influence prices (Noor, Asmawi,
and Abdullah 2015; Law, Paige, and Russell 2019). Hence,
we chose zoom level 16 which depicts approximately 600m
of surroundings in a 256 by 256 pixels image (Figure 4).
We evaluated our predictions using root-mean-squared er-
ror (RMSE) and mean absolute error (MAE). For a holistic
view of the performance, we selected both measurements,
as the MAE is robust to outliers, and the RMSE penalizes
extreme values heavier. As a resampling strategy, we used a
geographical out-of-sample dataset containing the two cities

Figure 4: Examples of satellite images on zoom level 16.
Images © Microsoft (2019).

of Candler and Woodfin (n=1916) in the Asheville area, not
represented in the training set. For training, we randomly
split the remaining dataset into 80% training set and 20%
validation set. Following the approach of Law, Paige, and
Russell (2019), we trained all models using the Adam op-
timizer for a maximum of 80 epochs. For the CNNs, we
used the additive combination of RMSE and MAE as the
loss function. We performed early stopping using the vali-
dation dataset to store the model with the best performance
on the validation data. For better convergence of the neural
network, we log-transformed the real-estate price and min-
max normalized the relational and image data.

The tested models are summarized in Table 2. We built
these different models based on the strategies depicted in
Figures 1, 2, and 3. Model 1 is a multi-kernel model trained
with the price as target variable. One kernel uses hard hous-
ing attributes while the other kernel focuses on learning
latent signals from the satellite images. Both models are
weighted equally and linearly (Xu, Tao, and Xu 2013). The
architecture of model 2 is based on the concatenation of dif-
ferent views (Poursaeed, Matera, and Belongie 2018; Bency
et al. 2017; Bessinger and Jacobs 2016). It uses features ex-
tracted from a CNN and fuses them with the house’s rela-
tional data in a Random Forest to compute a final price esti-
mate. Model 3 follows the approach of Naumzik and Feuer-
riegel (2020), where a hedonic pricing model based on a lin-
ear regression is boosted with the error term prediction of a
CNN. For the models 1 to 3, we used ResNet50 (He et al.
2015) for the CNN as the basic architecture, followed by an
additional fully connected layer with 128 neurons before the
output. One problem that can occur when using deep neural
networks are vanishing gradients. The ResNet architecture
based on skip-connections is less prone to this phenomenon
than other architectures. Finally, models 4 and 5 are multi-
view neural networks (Li, Yang, and Zhang 2018). Both are
based on the approach of Law, Paige, and Russell (2019).
Instead of following the network architecture of Law, Paige,
and Russell (2019) using VGG-16 for the image branch (Si-
monyan and Zisserman 2014), we again used the ResNet50
architecture including the additional dense layer. For model
5, we used one fully connected layer with 64 neurons and
a relu activation in the housing data branch, and another
fully connected layer with 64 neurons and a relu activation
after the concatenation of the branches. While model 4 is
semi-transparent, model 5 is a black-box model. In line with
previous real estate appraisal research, we used a standard
linear regression model as a baseline without modeling in-



Model Strategy Target variable Combination method
Model 1 A: Multi-kernel learning Price Linear weighting
Model 2 B: Multi-view concatenation by feature extraction Price Concatenation
Model 3 B*: Multi-view concatenation by boosting Error term Boosting
Model 4 C: Hybrid multi-view neural network Price Fusion by concatenation
Model 5 C*: Multi-view neural network Price Fusion by concatenation

Table 2: Summary of the different models compared.

teraction terms (Limsombunchai 2004). The results of our
experiments are reported in Table 3.

4 Results and Discussion
We separate the following section into two. First, we evalu-
ate the different strategies A to C from a metrical perspective
on the MAE and RMSE. Secondly, we show and compare
model 3 and 4 concerning the interpretability of coefficients.

4.1 Predictive Accuracy
The results summarized in Table 3 suggest that adding satel-
lite images to standard structured features improves the pre-
dictive accuracy of real estate appraisal models. The dif-
ferent strategies lead to a reduction of up to 5,413 USD in
MAE, which equals a performance improvement of 13.4%.
As these improvements are similar in magnitude to those in
related research, the results provide further empirical evi-
dence that satellite images are of importance for real estate
appraisal (Law, Paige, and Russell 2019; Bency et al. 2017).
However, the performance gains vary substantially between
the different multi-view learning strategies. Model 1, apply-
ing a multi-kernel learning strategy, performs significantly
worse than the baseline. This may be explained by the dif-
ferent predictive powers of the two kernels. While the linear
regression had a MAE of 40,303 USD, the CNN had a MAE
of 73,023 USD. This suggests that satellite images alone are
unable to precisely predict real estate value and that weight-
ing the prediction does not improve the estimation. In con-
trast, a multi-view concatenation strategy (models 2 and 3)
leads to performance gains of up to 4.7% in MAE compared
to the baseline. It seems that the modeled non-linear com-
bination of structured house attributes and extracted image
features in model 2 is beneficial for estimating real estate
prices. Model 3, applying the boosting strategy of Naumzik
and Feuerriegel (2020), had a lower RMSE but higher MAE
compared to the baseline. We can think of two explanations

Model MAE RMSE
Baseline 40,303 71,518
Model 1 49,019 78,983
Model 2 38,395 61,663
Model 3 43,173 68,362
Model 4 37,225 61,429
Model 5 34,890 56,099

Table 3: Performance of the different models. Before evalu-
ation, the log-transformation is inversed to gain better inter-
pretability.

for this phenomenon. First, the satellite image view used was
not entirely complementary (in other words: overlapping) to
the housing attributes, which also contain location informa-
tion. In the work of Naumzik and Feuerriegel (2020), visual
aesthetics extracted from the interior images might have im-
proved predictive performance, because these features were
not captured by the relational attributes. Second, using not
only an independently and identically distributed hold-out
set, but an out-of-sample test set further increases the re-
quired maturity level of the algorithm. On the in-sample val-
idation dataset, the performance improved on RMSE and
MAE. Nevertheless, on the out-of-sample predictions, only
a lower RMSE could be reported (Table 3). As the RMSE
penalizes larger errors stronger, it seems that extreme devia-
tions are reduced. Though, the higher MAE could be caused
by noise introduced by CNN’s prediction of the residual. Fi-
nally, models 4 and 5, both based on the multi-view neural
network strategy, performed best by far. Model 4, the inter-
pretable hybrid model provided 7.6% more accurate predic-
tions in terms of MAE. Model 5, the more complex black-
box model, outperformed the baseline by 13.4% in MAE. In
the next section we show the possibilities to interpret models
3 and 4.

4.2 Interpretability of Multi-View Real Estate
Appraisal Models

We report a selective set of coefficients of model 3 and
model 4 in Table 4. While the constants differ between the
models, the estimated effect of the size measured in square
feet, the amenity fireplace or the location in Asheville have
approximately the same size in both models. For example,
the house price increases by approximately 5% when the
house has a fireplace, ceteris paribus. As the continuous vari-
ables are min-max normalized, inferential statements can-
not be made. Nevertheless, the sign and size of the coef-

Variable Model 3 Model 4
Constant 11.07 0.27
Square Feet 0.98 1.00
Year Built 0.34 0.53
Half Bathrooms 0.12 0.12
Fireplace 0.05 0.05
Style 1.5 Conventional 0.05 0.04
Locality Asheville 0.17 0.11
Condition Unsound -0.23 -0.33
Satellite Image 1.05 0.41

Table 4: Selective set of coefficients of model 3 and 4



Strategy Benefit Disadvantage Suggested use
A Low training complexity Lower accuracy Advanced baseline model
B Sequential training process Difficult target variable selection Alternative for strategy C
B* Statistical interpretation Complementary views required Research purposes
C Interpretability High complexity of training Multi-use
C* Performance High complexity of training Predictive model

Table 5: Summarization of benefit and disadvantage of the different strategies

ficients show the direction and strength of impact on the
house price. For example, the condition unsound is associ-
ated with a negative price influence, while having additional
half-bathrooms adds value to the real estate. From interpret-
ing the coefficients magnitude, we can conclude that loca-
tion aspects captured by the satellite image have a strong
influence on the appraisal value, as the satellite image is
among the top-3 largest coefficients for model 3 and top-15
for model 4. The difference between the magnitude of the
image data coefficient of model 3 and 4 can be explained by
the different scales of the variables. While model 3 includes
the impact of the satellite image by the predicted residual
and is thus measured in log-USD, model 4 learned the im-
pact of the image implicitly. When the predicted residual
changes by 1%, the house price changes by 1.05% (model
3). Furthermore, model 3 has the advantage that besides the
coefficients, also standard errors, t-values, and significance
levels can be extracted from the linear regression model.
Concluding, the derived coefficients and statistical measures
can enhance the model understanding and transparency.

In summary, we can conclude the following lessons
learned from our experiments (Table 5): Models using multi-
kernel learning (Strategy A) are easy to train, however their
performance seems to depend strongly on the weighting of
the kernels. We suggest using these models as an advanced
baseline, in addition to classic hedonic pricing models. Fur-
thermore, models based on multi-view concatenation (Strat-
egy B) seem to reliably increase predictive performance.
This strategy is easier to optimize compared to multi-view
neural networks, however, selecting the right (intermediate)
target seems to be essential for successful learning. More-
over, it seems that the boosting approach of Naumzik and
Feuerriegel (2020) (Strategy B*) is more beneficial when
the additional view is largely complementary to the other
view. Nevertheless, the strength of this approach lays in in-
terpretable coefficients and a statistical measurement of the
effects. Consequently, this strategy seems very suitable for
research contexts. From our experience, multi-view neural
networks (Strategy C and C*) perform best. It seems that
learning a latent subspace leads to an effective feature repre-
sentation even if the multiple views overlap in some features.
In our experiment, the location of the house is, in addition to
the satellite image, also partly captured by city dummy vari-
ables. On the downside, according to Bency et al. (2017),
it can become difficult to achieve convergence of the neu-
ral network model, which raises the complexity of training.
In addition, model 5 (Strategy C*) comes as a black-box
model. To mitigate this weakness, a semi-transparent multi-
neural network as suggested by Law, Paige, and Russell

(2019) can enhance interpretability. Nonetheless, it comes
with an interpretability-accuracy trade-off, as model 4 has
weaker predictive performance than model 5. We suggest
using the multi-view neural networks for predictive models
in applications where explainability is not a key objective.

5 Conclusion
Of course, our work is not without limitations. We have
not yet investigated the interrelations between the structured
housing attributes and the satellite images. Future research
could, for example, analyze which information is overlap-
ping between views and which information can only be cap-
tured by one or the other view. Another limitation is related
to our data source. We use only a single dataset of Asheville,
NC to assess the effect of the learning strategy on predictive
performance. As related literature typically refers to neural
network architecture search, future research should perform
replication and ablation studies to examine, if results can be
reproduced across datasets, image types and domains (be-
yond housing).

Despite these limitations, the following implications
for research and practice can be derived from our find-
ings. Satellite images can clearly improve the accuracy of
computer-assisted mass appraisal. Our results indicate that
the MAE can be reduced by up to 13%, depending on
the chosen multi-view learning strategy. Therefore, banks
and lenders should consider using visual data to improve
their real estate appraisal estimates. Moreover, different
techniques match different purposes and user groups. Re-
searchers interested in a statistical interpretation of the re-
sults might find the boosting strategy of model 3 more ap-
pealing. Practitioners mainly interested in predictive accu-
racy might prefer model 5, the multi-view neural network.
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