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Abstract
Named Entity Recognition has been extensively investigated
in many fields. However, the application of sensitive entity
detection for production systems in financial institutions has
not been well explored due to the lack of publicly available,
labeled datasets. In this paper, we use internal and synthetic
datasets to evaluate various methods of detecting NPI (Non-
public Personally Identifiable) information commonly found
within financial institutions, in both unstructured and struc-
tured data formats. Character-level neural network models
including CNN, LSTM, BiLSTM-CRF, and CNN-CRF are
investigated on two prediction tasks: (i) entity detection on
multiple data formats, and (ii) column-wise entity predic-
tion on tabular datasets. We compare these models with other
standard approaches on both real and synthetic data, with re-
spect to F1-score, precision, recall, and throughput. The real
datasets include internal structured data and public email data
with manually tagged labels. Our experimental results show
that the CNN model is simple yet effective with respect to ac-
curacy and throughput and thus, is the most suitable candidate
model to be deployed in the production environment(s). Fi-
nally, we provide several lessons learned on data limitations,
data labelling and the intrinsic overlap of data entities.

Introduction
Named Entity Recognition (NER) is a subset of Natural
Language Processing (NLP) used for identifying predefined
entities in text. NER is used on both domain-specific text
such as social network (Ritter et al. 2011) and biomedical
text extraction (Cho and Lee 2019; Fritzler, Logacheva, and
Kretov 2019), as well as more general corpora (Gui et al.
2019; Kuru, Can, and Yuret 2016; Kurniawan and Louvan
2018). With a few exceptions (Francis, Van Landeghem, and
Moens 2019), the use of NER in finance has not been exten-
sively studied as there do not exist publicly available, labeled
datasets that contain the sensitive information. Within finan-
cial institutions, those sensitive information needs to be pro-
tected before data are uploaded on emails, githubs, or data
repositories. In addition, there are often a large amount of
unstructured and structured data with different formats that
are stored across many internal storage systems. In this pa-
per, we implement an NER system that overcomes the afore-
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mentioned obstacles. Our system generates data with sensi-
tive information and consists of neural network models with
both reasonably high accuracy and data throughput. These
models have been optimized for architectures and data pre-
processing over multiple computation resources. Our NER
system concentrates on solving two problems: (i) predicting
the presence of sensitive entities on different data formats,
and (ii) predicting column-wise entities on tabular datasets
in which each column contains only one type of entity. Be-
low, we list our contributions in detail.

Data generation with sensitive information. Due to the
lack of public datasets with sensitive information, a collec-
tion of common sensitive entities is generated, from which
we generate multiple datasets containing these entities un-
der different formats. The generated datasets consist of un-
structured text with sensitive entities dispersed throughout,
and structured single-column and multi-column data where
each column contains a sensitive entity of the same type.
Each structured data is represented in different file types,
csv, json, and parquet. For evaluation purposes, we incorpo-
rate internal data and real email data extracted from spam
email corpora.

Neural network model optimization for production en-
vironments. We explored various experiments on multiple
neural network models including CNN (Convolutional Neu-
ral Network), LSTM (Long Short-Term Memory), CNN-
LSTM, and CRF (Conditional Random Field) based mod-
els, CNN-CRF, BiLSTM-CRF, where CRF layer is utilized
as a tag decoder. We also evaluated the popular NER library
SpaCy with its default NER configurations and retrained on
our training datasets. Finally, for a baseline comparison, a
regex model including a set of hand curated regex filters de-
signed specifically for the entities in our dataset, as well as
a CRF model with handcrafted features are used.

We observe that our CNN model outperformed the other
models with respect to both accuracy and throughput, and
thus is the most suitable model for production usage. This
model is also universal: it easily adapts from the entity detec-
tion task to column-wise entity prediction on tabular datasets
with some slight modifications on input data preprocessing,
and it is comparable to a specifically designed model for this
task, Column-CNN-CRF.



Related Work
Sensitive information detection in structured text has been
explored in different fields such as military and politics (Xu
et al. 2019), and social network (Caliskan Islam, Walsh,
and Greenstadt 2014). However, their work focused on sen-
sitive document classification problems as opposed to our
NER problem which predicts sensitive entities in text, under
the financial domain. Approaches for NER include statisti-
cal modeling methods (Eddy 1996; Kapur 1989; Lafferty,
McCallum, and Pereira 2001) and recently neural network
models (Yang, Zhang, and Dong 2017; Peters et al. 2018;
Shen et al. 2017). In this paper, we seek for effective NER
models which obtain not only high accuracy but also high
throughput. To that end, we first optimize two models in this
framework, CNN and LSTM (Huang, Xu, and Yu 2015),
evaluating different architectures to extract richer features
LSTM-CNN (Chiu and Nichols 2016). We then examine the
effect of the CRF layer as a tag decoder to optimize the la-
bel sequence prediction. This has been observed to be an
effective addition by (Collobert et al. 2011) with CNN-CRF,
and (Huang, Xu, and Yu 2015; Francis, Van Landeghem, and
Moens 2019) with BiLSTM-CRF. It is worth noting that the
aforementioned models are based on word embeddings, or
the combination of word embeddings and character embed-
dings. In this work, we focus on character-level models as
opposed to word-level models as the considered sensitive
entities, specific to the financial domain, cannot be repre-
sented by the existing tokenizers trained on the general cor-
pora (Boukkouri et al. 2020). Moreover, the sensitive entities
we are trying to identify are unique and non-public (NPI),
meaning that word-level representation of these entities po-
tentially results in being out-of-vocabulary. That being said,
later made model comparisons do include a word-level NER
model from the standard NLP toolkit, spaCy which are con-
gruent with (Kuru, Can, and Yuret 2016), showing its dis-
advantage with such types of data. Beside spaCy, there ex-
ists other well-known NER tools such as NLTK and recently
Presidio from Microsoft, a tool for PII detection on text and
image. However, spaCy was selected for comparison as it is
ubiquitous and has been utilized in many studies (Dutt et al.
2018; Gelernter and Zhang 2013; Malmasi S. 2016).

Sensitive Data Generation
The datasets used for model training and evaluation are
created via synthetic generation and labeling since a pub-
lic dataset for the desired entities did not exist. These
datasets contain both sensitive and non-sensitive entities
which would commonly be found within a financial insti-
tution’s database.

Sensitive Entity Generation
Below is the list of rules associated with the 19 entities
considered in this paper (the detailed examples of these
entities are given in (Truong, Walters, and Goodsitt 2020)):

Sensitive entities:
Address (ADDRESS): US address which may be multi-line
and can contain newline characters. ”City/City, State” are

not included in this set.
Bank Account Number (BAN): Numbers associated with
an account at a bank. While technically these could be
alphanumeric 1-18 in length, we limited to 10-18 digits as
those are the far more common.
Credit Card Number (CREDIT CARD): Amex, Visa,
Mastercard, and Discover credit card numbers with the
optional delimiters (”,”, ” ”, ”.”, ” ”).
Datetime (DATETIME): Datetime formats recognizable
by the python datetime library.
Email Address (EMAIL ADDRESS): An email address
or email portion of the URI not contained within a url.
Hash or Encryption Key (HASH OR KEY): Randomized
concatenation of 16 or more alphanumeric characters and
special characters ”=”, ”-”, ”\”, ”/”, ”+” for md5, SHA1,
SHA256, SHA512, or any encryption key.
IPv4 (IPV4): Standard IPv4 formats.
IPv6 (IPV6): Standard IPv6 formats.
MAC Address (MAC ADDRESS): Standard MAC Ad-
dress formats with delimiters (”-”, ”:”, ” ”, ”.”).
Persons Name (PERSON): Name of a person including
titles, but not including possessive nouns.
Phone Number (PHONE NUMBER): US/-
Canada/UK/Ireland phone numbers with or without
international code, zip code, or extensions.
Social Security Number (SSN): US Social Security
Numbers with varying delimiters (”-”, ”.”, ””, ” ”).
URL (URL): Any url with a network scheme, www initial-
ized, or valid url if the aforementioned were prepended.
UUID (UUID): UUID4 format.

Non-Sensitive Entities:
Background (BACKGROUND): Any text which does not
fall into the other categories.
Float (FLOAT): Digits with single decimal surrounded by
whitespace or punctuation.
Integer (INTEGER): Non-sensitive digits without decimal,
surrounded by whitespace or punctuation.
Ordinal (ORDINAL): Representations of order/position
via words or alphanumeric mixes or version identifiers.
Versions must have an alpha character associated with the
version unless it is 3 digits separated by periods.
Quantity (QUANTITY): Integer or float prepended/ap-
pended with text or quantity characters.

Throughout the paper, we refer entity/entity type as entity
category, entity format as variants per entity type, and entity
value as values per format of each entity. For example, en-
tity CREDIT CARD has a format XXXX-XXXX-XXXX-
XXXX, of which one of the values is 1111-2222-3333-4444.

Synthetic Data Generation
Both structured and unstructured data formats are synthet-
ically generated: (1) unstructured text, (2) multi-column
structured data, and (3) single-column structured data.

Unstructured Text Unstructured lines of text are ran-
domly generated without context for entity placement. To
incorporate different text structures, the following text for-
mats are included. (a) sentences, (b) JSON, and (c) delim-



ited data. JSON and delimited data are ingested as text to
investigate the case where such structured data are read as
text intentionally or due to the schema error. For all formats,
a list of adjectives, adverbs, nouns, verbs, stop words, and
punctuation are generated from the WordNet corpus 1 and
considered background words. These words occur with a
probability distribution obtained from the brown corpus 2,
which are then randomly uppercased and combined with the
random delimiters such as “-” and “,”. For a non-background
word, the selection is uniform, random across all other enti-
ties. The tunable parameters are given in (Truong, Walters,
and Goodsitt 2020). Combining background and NPI words,
the three unstructured formats are generated as follows:
• Sentences: Data are generated by first randomly deter-

mining the number of background words in a sentence,
and then iteratively, randomly determining if each subse-
quent word is background or otherwise until the number
number of background words is met.

• JSON: Words are randomly generated for keys and values
with no allowed nesting.

• Delimited Data: Similar to random sentences, words are
iteratively generated except separated by a randomly cho-
sen delimiter (”,”, ” ”, ”\t”, ”;”, ”\x00”, ”\x01”).

The above formats can be tuned to have different lengths and
probability of NPI occurrence or co-occurrence.

Multi-Column Structured Data Tabular datasets with 1
to 20 columns are generated with random schemas in CSV,
PARQUET, JSON, and AVRO formats. Each column has a
50% probability of being background with uniform random
probability for all other entities. All entities within a column
contain the same format.

Single-Column Structured Data Tabular single-column
datasets are generated in CSV, PARQUET, JSON, and
AVRO formats. Each dataset has uniform random probabil-
ity for all entities. All entities within the dataset contain the
same format.

Internal Structured Data
Twenty-five schemas found within a financial institution
were replicated via synthetic data, matching the format and
statistics of the underlying real data. Each dataset contains
1000 samples (where a row is a sample). When the dataset
has a tabular schema, CSV, PARQUET, AVRO, and JSON
files are created. Otherwise, only JSON and AVRO datasets
are created due to the nested structure of the dataset.

Public Email
A random subsample of emails from the Enron, Trec07, and
ADCG SS14 Challenge corpora 3 are selected for manual
labeling. For each corpus, 200 unique emails are randomly
selected. Each email can have full header format or reduced

1https://wordnet.princeton.edu/
2http://korpus.uib.no/icame/brown/bcm.html
3https://www.cs.cmu.edu/ enron/, https://plg.uwaterloo.ca/ gv-

cormac/treccorpus07/, https://www.kaggle.com/c/adcg-ss14-
challenge-02-spam-mails-detection/data

header format containing only Date, From, To, and Subject.
Not all entities existed in this dataset.

Datasets for Entity Detection Task
Datasets and the corresponding number of entities for train
and test data are given in Table 1. For synthetic structured
data, the train (test) data contain 50 (30) variations of multi-
column schemas each with 100 (50) samples, and 250 (25)
variations of single-column schemas each with 200 (200)
samples. The tunable parameters for unstructured text are
detailed in (Truong, Walters, and Goodsitt 2020).

Data Train Test
Total (K) 413 841

Unstructured Text (K) 193 22

Multi-column Structured Data (K) 121 19

Single-column Structured Data (K) 99 32

Internal Structured Data (K) 25

Public Email (K) 768

Table 1: Number of entities in the train and test datasets

Datasets for Column-wise Entity Prediction Task
Separate training and testing datasets are generated for eval-
uation of columnar-level models, which predict entity type
for a given column.

Training Each training dataset contains 75k entity values.
To investigate the value-grouping effect on the prediction
accuracy, values are randomly subsampled for a given en-
tity type and aggregated in different sizes. Ten datasets are
generated with aggregate sizes ranging from 1 to 10.

Testing Testing datasets are obtained from synthetic struc-
tured testing datasets and internal structured testing datasets.
As with the training dataset, values are randomly subsam-
pled from a column in a given dataset and aggregated with
sizes ranging from 1 to 10. This aggregation approach is re-
sampled 10 times for the columns in each dataset.

Modeling Approaches
Character-level Neural Network Models
Our general character-level model architecture is given
in Figure 1. Input strings are character encoded using
ASCII indices. As string lengths vary across samples, the
zero padding is applied at the end of each sample. To
represent these encoded indices in latent character features,
a pretrained Glove Character embedding (Pennington,
Socher, and Manning 2014) is used. The embeddings are
fed into the next layers such as CNN and LSTM to extract
more detailed features. Finally, a prediction network, fully
connected layers or a tag decoder such as CRF, is applied
to optimize the sequence prediction. From this general
model architecture, the following models are considered
in our paper: CNN, LSTM, CNN-LSTM, CNN-CRF, and
BiLSTM-CRF. These models are selected to investigate (i)
the effect of convolutional layer, recurrent network layer
and their combination on feature learning, and (ii) the



effect of additional tag decoder layer (CRF) to the overall
prediction accuracy of the models.

Data processing optimizations
In order to maximize the throughput of our models in
a production environment, the input character encoding
component is integrated into the tensorflow computation
graph. In addition, a flattening mechanism is applied to the
input data as illustrated in Figure 2. Input characters are
all concatenated and chunked into an array of max length
characters. This step increases the model throughput on
both CPU instances (6x) and GPU instances (3x-4x).

CNN Model
Detailed in Figure 3(a), the core components of the CNN
model are the four convolutional blocks followed by two
connected blocks. Each convolutional block consists of
a 1-d convolutional layer, dropout layer, and batch nor-
malization layer. Each fully-connected block consists of a
dense layer and dropout layer. Dropout layers help regu-
larize the network, and increases the accuracy since our
data contains random context. Batch normalization is ap-
plied to reduce the effect of the internal covariate shift
(Ioffe and Szegedy 2015). Through manual optimization,
the CNN model obtains the best accuracy with the fol-
lowing parameters: epochs=10, num-conv-layer=4, num-
dense-layer=2, batch-size=24, embedding-dimension=64,
max-length=3400, filter-size=13, dense-layer-size=96, and

Figure 1: Character-level neural network model architecture

Figure 2: Flattening preprocessing for input text

dropout=7.3%.

LSTM Model
Throughout manual optimization, only one LSTM layer is
utilized and illustrated in Figure 3(b). The best parameters
for the LSTM model are given as: epochs=10, num-lstm-
layer=1, batch-size=24, embedding-dimension=64, max-
length=3400, lstm-size=64, activation=tanh, recurrent-
dropout=10%, dense-layer-size 32, and dropout 10%. CuD-
NNLSTM layers are used instead of the LSTM layer to op-
timize throughput as we will see later that CuDNNLSTM
shows the significant run-time improvement without sacri-
ficing the accuracy.

CNN-LSTM Model
We consider the combined model in which the CNN lay-
ers as in Figure 3(a) is put before the LSTM layer fol-
lowed by the 2-layer dense network. The detailed model
is given in Figure 3(c). Similar to the LSTM model, CuD-
NNLSTM layer is used in place of LSTM layer to opti-
mize throughput. The best obtained parameters are given
as: epochs=10, num-conv-layer=4, num-lstm-layer=1, num-
dense-layer=2, batch-size=24, embedding-dimension=64,
max-length=3400, filter-size=13, lstm-size=64, activa-
tion=tanh, recurrent-dropout=10%, dense-layer-size=96,
and dropout=10%.

CRF-based Models
CRF has shown provable advantages over the fully con-
nected layer for tag decoding step as it is able to learn the
label of each character based on its neighbors (Huang, Xu,
and Yu 2015; Kuru, Can, and Yuret 2016). To investigate the
effectiveness of this CRF layer as tag decoder, two following
models are investigated.

CNN-CRF: same architecture as the CNN model except
the dense layers are replaced by the CRF layer illustrated in
Figure 3(d). Similar to LSTM related models, CRF based
models run slowly compared to other models. Through
the optimization process, the best parameters for this
model is given as: epochs=15, num-crf-layer=1, num-
conv-layer=4, batch-size=128, embedding-dimension=64,
max-length=3400, filter-size=13, dropout=7.3%, opti-
mizer=rmsprop.

BiLSTM-CRF: suggested as the best model on var-
ious NER tasks (Huang, Xu, and Yu 2015), the BiL-
STM layer is swapped with the CNN layer from the
CNN-CRF model as depicted in Figure 3(e). The best
obtained parameters are as follows: epochs=8, num-crf-
layer=1, num-bilstm-layer=1, batch-size=128, embedding-
dimension=64, max-length=2500, bilstm-layer=1, lstm-
size=64, activation=tanh, recurrent-dropout=0%, merge-
mode=concat, dropout=20%, optimizer=rmsprop.

Existing NER Models
Regex A list of regular expressions for all entities except
PERSON (too large of a search space) and BACKGROUND
is manually generated with respect to the training dataset.



Figure 3: Character-level models. (a) Character-level CNN, (b) Character-level LSTM, (c) Character-level CNN-LSTM, (d)
Character-level CNN-CRF, (e) Character-level BiLSTM-CRF

All regex rules are applied to the input text, sets of char-
acters not matching a rule are considered BACKGROUND
and labels were evenly split for ties. Since regex can become
quite complex, only simple regex expressions or those which
are quickly discoverable online are used. Additionally, each
regex pattern is surrounded by encapsulators which ensure
that any matching string in unstructured text is delimited by
the specified characters. The detailed regex pattern is given
in (Truong, Walters, and Goodsitt 2020).

CRF Model with Handcrafted Features (Ngram-CRF)
A standalone CRF model with the following handcrafted
feature extraction is considered:

-char.lower(): get the lowercase character
-char.isupper(): check if the character is uppercased
-char.isdigit(): check if the character is digit
-char.isalnum(): check if the character is alphanumeric

For each character, its extracted features are combined with
features of its neighbors within a sliding window, instead
of being fed into encoding and embedding components.
Through manual optimization, the model obtain the best re-
sults with the parameters: window-len=4, batch-size=1000,
max-length=2500, l1-coefficient=0.1, l2-coefficient=0.1,
max-iterations=100, all-possible-transitions=True, all-
possible-states=True

spaCy Model The spaCy model is fine-tuned on our train-
ing datasets with the default parameters. As spaCy processes
data at the token level, the input strings are fed to this model
without splitting to the character level. However, at the eval-
uation stage, the predictions from the spaCy model are split
into character labels from token results to compare with
other models.

Columnar-Level Models
Four model variations are evaluated: (1) the best character-
level model trained on the unstructured training dataset
given in Table 1 (Char-Best-Pretrained), (2) the best
character-level model trained on the columnar-level dataset
(Char-Best-Retrained), (3) a columnar-based CNN-CRF
model (Column-CNN-CRF), and (4) a columnar-based
CNN-BiLSTM model (Column-CNN-BiLSTM). Each
model utilizes subsampled columns to make generalized

predictions for an entire column.

Best Character-Level Model For the best character-level
models, data are preprocessed by taking a number of sam-
pled rows per column and concatenating them into a single
sample delimited by five \x01 characters. Postprocessing on
the model output is applied to convert the character entity
values into a single subsample entity by taking the mode of
character entity values, excluding PAD and separator char-
acters. In cases of a tie during prediction, a non-background
entity is randomly selected.

Figure 4: Columnar-level neural network model

Figure 5: Columnar-level model workflow



Columnar-Based CNN Models Subsampled rows in a
column were processed similarly to words in a sentence
(Chiu and Nichols 2016; Fritzler, Logacheva, and Kre-
tov 2019) within the columnar-based CNN approaches
and fed into the model as a single sample. Before be-
ing fed into the model, each word is limited to 52 char-
acters and subsequently encoded. The model architecture,
derived from (Chiu and Nichols 2016), is described in
Figure 4. The model output is an entity per subsampled
row within the column which was aggregated via the
mode into a single value, identical to the best character-
level models. The following were the parameter values for
these models (where applicable): dropout=0.5, num-conv-
filters=30, conv-size=9, dropout-recurrent=0.25, lstm-state-
size=100, learning-rate=0.0105, optimizer=’nadam’, num-
conv-layers=2, embedding-dim=30. Postprocessing on the
model output is applied to convert the word entity values
into a single subsample entity by taking the mode of charac-
ter entity values, as seen in Figure 5. In cases of a tie during
prediction, a non-background entity is randomly selected.
This subsample entity is the assumed generalized entity se-
lection for the column.

Evaluation Results
Evaluation Metrics
In this paper, precision, recall, and F1-score are used as the
model accuracy comparison metrics. Performance on the
test dataset is evaluated using micro and macro averages
across all entities excluding PAD and BACKGROUND. In
addition to accuracy, model throughput, measured as GB of
data processed per hour (GB/hr), is evaluated on both CPU
and GPU AWS EC2 instances.

Entity detection on Multiple Data Formats
Accuracy Evaluation Table 2 shows results of the mod-
els on the test set. Model performance is consistently higher
on the synthetic datasets which have more similar schema
and context to the training dataset as opposed to the inter-
nal and email datasets which do not. Additionally, regex,
spaCy, Ngram-CRF, and the LSTM model are less accurate
than the other models. Models with CRF layer as the tag
decoder such as CNN-CRF, BiLSTM-CRF, and the com-
bined CNN-CuDNNLSTM model provide marginal to no
improvement over the CNN model. Detailed results regard-
ing individual entities are described in (Truong, Walters, and
Goodsitt 2020).

Throughput Evaluation Model throughput is evaluated
on a CPU instance, c5.2xlarge (8 vCPU, 16 GiB Mem-
ory), and varying GPU instances, g4dn.xlarge (4 vCPU, 16
GiB Memory, 1 Tesla T4 GPU, 16 GiB GPU Memory),
g4dn.8xlarge (32 vCPU, 128 GiB Memory, 1 Tesla T4 GPU,
16 GiB GPU Memory), p3.2xlarge (8 vCPU, 61 GiB Mem-
ory, 1 Tesla V100 GPU, 16 GiB GPU Memory), on the en-
tire test dataset as shown in Table 3. The CNN model is the
highest performing model on both CPU & GPU instances.
The next highest throughput models are the CuDNNLSTM
and CNN-CuDNNLSTM models which are 2x-5x slower as

they contain the LSTM layers. Note that unlike CuDNNL-
STM layers, the regular LSTM layers can be utilized on the
CPU, but are substantially slower on GPU.

CRF-based models (CNN-CRF, BiLSTM-CRF) suffer
low throughput. Additionally, since the CRF layer relies on
an RNN implementation, the models CRF-CNN, LSTM,
BiLSTM-CRF, and CNN-LSTM have similar throughput.
The CRF model with the lowest throughput is Ngram-CRF,
likely due to its implementation using the sklearn-crfsuite
package which supports CPU only.

For spaCy model, we configured the data pipeline to
achieve maximum throughput. This data pipeline is different
from our accuracy evaluation, and could result in slightly re-
duced accuracy. The spaCy model obtained higher through-
put on the GPU rather than CPU, but is one of the slowest
lowest performing models. Note that the SpaCy library uses
the CuPy to execute the graph on GPU and does not take
advantage of optimizations provided by Tensorflow, such as
CuDNN.

Column-wise Entity Prediction on Tabular
Datasets
In this section, we evaluate only structured datasets whose
columns contain consistent entity formats. Our goal is to
predict the entity type of each column. The columnar-level
models along with the CNN model, the most optimal model
in terms of accuracy and throughput, are evaluated.

Figure 6: Accuracy (F1-score) for columnar-level models

Accuracy Evaluation The accuracy results for column-
wise entity prediction are given in Figure 6. Char-CNN-
Retrained, Char-CNN-Pretrained and Column-CNN-CRF
models obtained the best macro-average f1-score which
depicts how the Char-CNN-Retrained and Char-CNN-
Pretrained are context and task invariant after slight mod-
ifications to the data processing pipeline. Additionally, in-
creasing the number of sampled rows does not appear to im-
prove model accuracy. However, improvement via increased
sampled rows may be dependent on the complexity of each
entity as seen in the breakdown of accuracy results for in-
dividual sensitive entities given in (Truong, Walters, and
Goodsitt 2020).



Model / Datasets
Multi-column,
Structured Data

Single-column,
Structured Data

Unstructured Text Public Emails Internal,
Structured Data

Char CNN
(0.99, 0.99, 0.99)
(0.98, 0.97, 0.97)

(0.99, 0.99, 0.99)
(0.97, 0.97, 0.97)

(0.98, 0.96, 0.97)
(0.96, 0.93, 0.94)

(0.67, 0.79, 0.73)
(0.54, 0.78, 0.60)

(0.82, 0.87, 0.84)
(0.74, 0.83, 0.72)

Char CuDNNLSTM
(0.94, 0.93, 0.93)
(0.89, 0.89, 0.88)

(0.95, 0.93, 0.94)
(0.87, 0.82, 0.84)

(0.84, 0.83, 0.83)
(0.82, 0.76, 0.76)

(0.55, 0.61, 0.58)
(0.46, 0.64, 0.51)

(0.54, 0.80, 0.65)
(0.54, 0.70, 0.59)

Char CNN + CuDNNLSTM
(0.99, 0.98, 0.99)
(0.97, 0.96, 0.97)

(0.98, 0.98, 0.98)
(0.93, 0.93, 0.93)

(0.96, 0.94, 0.95)
(0.92, 0.89, 0.89)

(0.73, 0.75, 0.74)
(0.61, 0.75, 0.64)

(0.84, 0.90, 0.87)
(0.76, 0.85, 0.75)

Word spaCy
(0.86, 0.84, 0.85)
(0.82, 0.74, 0.77)

(0.96, 0.96, 0.96)
(0.93, 0.90, 0.90)

(0.75, 0.77, 0.76)
(0.74, 0.70, 0.71)

(0.62, 0.62, 0.62)
(0.52, 0.60, 0.50)

(0.48, 0.66, 0.56)
(0.53, 0.67, 0.48)

Char Ngram + CRF
(0.97, 0.94, 0.95)
(0.90, 0.87, 0.88)

(0.97, 0.96, 0.96)
(0.91, 0.85, 0.86)

(0.91, 0.88, 0.90)
(0.82, 0.80, 0.80)

(0.64, 0.71, 0.67)
(0.49, 0.67, 0.54)

(0.74, 0.84, 0.79)
(0.67, 0.74, 0.68)

Char CNN + CRF
(0.99, 0.99, 0.99)
(0.98, 0.98, 0.98)

(0.99, 0.99, 0.99)
(0.96, 0.96, 0.96)

(0.98, 0.97, 0.97)
(0.96, 0.94, 0.95)

(0.70, 0.81, 0.75)
(0.55, 0.79, 0.62)

(0.83, 0.92, 0.87)
(0.71, 0.85, 0.74)

Char BiLSTM + CRF
(0.99, 0.98, 0.99)
(0.98, 0.96, 0.97)

(0.99, 0.98, 0.98)
(0.97, 0.93, 0.95)

(0.98, 0.95, 0.96)
(0.95, 0.92, 0.93)

(0.71, 0.78, 0.74)
(0.56, 0.73, 0.60)

(0.79, 0.86, 0.82)
(0.73, 0.81, 0.71)

Char Regex
(0.71, 0.73, 0.72)
(0.76, 0.60, 0.63)

(0.91, 0.81, 0.85)
(0.79, 0.55, 0.61)

(0.67, 0.67, 0.67)
(0.73, 0.58, 0.60)

(0.64, 0.62, 0.63)
(0.54, 0.62, 0.53)

(0.31, 0.50, 0.38)
(0.61, 0.54, 0.49)

Table 2: Evaluation results on the test set for sensitive entities detection. In each cell, the first line and second line shows the
micro and macro average results, respectively. Each line represents precision, recall and F1-score respectively. Synthetic and
real data are given in the first three columns and the last two columns, respectively.

Model / EC2 Instance Type c5.2xlarge g4dn.xlarge g4dn.8xlarge p3.2xlarge

Char CNN 3.01 18.08 18.18 28.53

Char LSTM 0.9574 0.4668 0.4328 0.3833

Char CuDNNLSTM N/A 7.893 7.102 6.346

Char CNN+LSTM 0.7675 0.4407 0.4025 0.3701

Char CNN+CuDNNLSTM N/A 4.704 4.258 5.031

Word spaCy (Unflattened) 0.054 0.045 0.045 0.032

Word spaCy (Flattened) 0.071 0.134 0.13 0.11

Char Ngram + CRF 0.087 0.071 0.087 0.087

Char CNN + CRF 0.8673 0.312 0.4014 0.2455

Char BiLSTM + CRF 0.543 0.0839 0.0979 0.0685

Char Regex 0.8388 0.7344 0.734 0.6055

Table 3: Throughput in GB/hr evaluation on four different
AWS EC2 instances

Throughput Evaluation Figure 7 illustrates model
throughput for the column-wise prediction task. Despite
similar accuracy performance with Column-CNN-CRF, the
Char-CNN models had 3x-10x lower throughput. Through-
put differences may be attributed to the larger parameter
count of the Char-CNN models due to both CNN hyper-
parameter differences such as filter-size, num-filters, num-
conv, and the output layer being significantly larger because
of the character level prediction. Additionally, Char-CNN
models did not use flattening mechanism which could also
contribute to the throughput decreasing.

Figure 7: Throughput evaluation for columnar-level models.

Conclusions
In this paper, we tackle the problems of identifying the sen-
sitive information in different data formats for financial in-
stitutions. We optimize a set of neural network models to
be deployed in the production environment(s). Our evalua-
tion results on both synthetic data, real email and internal
data shows that the CNN model is simple yet very effec-
tive with respect to accuracy and throughput, and thus the
most suitable model for the production. We believe this work
will shed some light on this challenging problem from which
several lessons learned along with future directions are dis-
cussed as follows:

• Limitations of experimental data The synthetic data is
generated without context which may reduce the model
performance on the real data with context, e.g., email
datasets. Further directions may include the data gener-
ation with more realistic background which can be gener-
ated from some generative models such as GAN.



• Data labeling There exists some discrepancy in data la-
beling for the real email dataset, which might affect the
overall results. However, it is worth noting that this is an
intrinsic and common problem for this framework.

• Overlaps of entities There exist overlap values among
several entities such as BAN, Phone-Number and SSN.
Unless extra data (e.g., column names and statistical at-
tributes of the value ranges) is provided, this problem ap-
pears inevitable in this framework.
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